|
Function (\(t\)-Domain)
\begin{equation*}
f(t)
\end{equation*}
|
Laplace Transform (\(s\)-Domain)
\begin{equation*}
\lap{f(t)} = F(s)
\end{equation*}
|
Existence Condition |
L\(_1\)
|
\begin{equation*}
1
\end{equation*}
|
\begin{equation*}
\frac{1}{s}
\end{equation*}
|
\begin{equation*}
s > 0
\end{equation*}
|
L\(_2\)
|
\begin{equation*}
e^{at}
\end{equation*}
|
\begin{equation*}
\frac{1}{s - a}
\end{equation*}
|
\begin{equation*}
s > a
\end{equation*}
|
L\(_3\)
|
\begin{equation*}
t^n
\end{equation*}
|
\begin{equation*}
\frac{n!}{s^{n+1}}
\end{equation*}
|
\begin{equation*}
s > 0
\end{equation*}
|
L\(_4\)
|
\begin{equation*}
\sin(bt)
\end{equation*}
|
\begin{equation*}
\frac{b}{s^2+b^2}
\end{equation*}
|
\begin{equation*}
s > 0
\end{equation*}
|
L\(_5\)
|
\begin{equation*}
\cos(bt)
\end{equation*}
|
\begin{equation*}
\frac{s}{s^2+b^2}
\end{equation*}
|
\begin{equation*}
s > 0
\end{equation*}
|
L\(_6\)
|
\begin{equation*}
e^{at}\ t^n
\end{equation*}
|
\begin{equation*}
\frac{n!}{(s-a)^{n+1}}
\end{equation*}
|
\begin{equation*}
s > a
\end{equation*}
|
L\(_7\)
|
\begin{equation*}
e^{at}\sin(bt)
\end{equation*}
|
\begin{equation*}
\frac{b}{(s-a)^2+b^2}
\end{equation*}
|
\begin{equation*}
s > a
\end{equation*}
|
L\(_8\)
|
\begin{equation*}
e^{at}\cos(bt)
\end{equation*}
|
\begin{equation*}
\frac{s-a}{(s-a)^2+b^2}
\end{equation*}
|
\begin{equation*}
s > a
\end{equation*}
|
R\(_{1}\)
|
\begin{equation*}
f'(t)
\end{equation*}
|
\begin{equation*}
sF(s) - f(0)
\end{equation*}
|
\begin{equation*}
s > 0
\end{equation*}
|
R\(_{2}\)
|
\begin{equation*}
f''(t)
\end{equation*}
|
\begin{equation*}
s^2F(s) - sf(0) - f'(0)
\end{equation*}
|
\begin{equation*}
s > 0
\end{equation*}
|
R\(_{3}\)
|
\begin{equation*}
f'''(t)
\end{equation*}
|
\begin{equation*}
s^3F(s) - s^2f(0) - sf'(0) - f''(0)
\end{equation*}
|
\begin{equation*}
s > 0
\end{equation*}
|
R\(_{4}\)
|
\begin{equation*}
e^{at} f(t)
\end{equation*}
|
\begin{equation*}
F(s-a)
\end{equation*}
|
\begin{equation*}
s > 0
\end{equation*}
|
R\(_{5}\)
|
\begin{equation*}
t^n f(t)
\end{equation*}
|
\begin{equation*}
(-1)^n \frac{d^n}{ds^n}\Big[F(s)\Big]
\end{equation*}
|
\begin{equation*}
s > 0
\end{equation*}
|