Skip to main content\(\newcommand\DLGray{\color{Gray}}
\newcommand\DLO{\color{BurntOrange}}
\newcommand\DLRa{\color{WildStrawberry}}
\newcommand\DLGa{\color{Green}}
\newcommand\DLGb{\color{PineGreen}}
\newcommand\DLBa{\color{RoyalBlue}}
\newcommand\DLBb{\color{Cerulean}}
\newcommand\ds{\displaystyle}
\newcommand\ddx{\frac{d}{dx}}
\newcommand\os{\overset}
\newcommand\us{\underset}
\newcommand\ob{\overbrace}
\newcommand\obt{\overbracket}
\newcommand\ub{\underbrace}
\newcommand\ubt{\underbracket}
\newcommand\ul{\underline}
\newcommand\laplacesym{\mathscr{L}}
\newcommand\lap[1]{\laplacesym\left\{#1\right\}}
\newcommand\ilap[1]{\laplacesym^{-1}\left\{#1\right\}}
\newcommand\tikznode[3][]
{\tikz[remember picture,baseline=(#2.base)]
\node[minimum size=0pt,inner sep=0pt,#1](#2){#3};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\newcommand{\sfrac}[2]{{#1}/{#2}}
\)
Worksheet Key Terms & Concepts
β³οΈ Summary of the Key Ideas.
-
Linear Homogeneous Differential Equations with Constant Coefficients (LHCC)
-
The Characteristic Equation
-
By assuming a solution of the form \(y = e^{rx}\text{,}\) an LHCC can be reduced to a characteristic polynomial in \(r\text{.}\)
-
The solutions to the characteristic equation determine the form of the general solution.
-
βπ» Method 7. LHCC Method.
The general solution to a linear homogeneous differential equation with constant coefficients (LHCC) of the form
\begin{equation}
a_n\ y^{(n)} + a_{n-1}\ y^{(n-1)} + \cdots + a_2\ y'' + a_1\ y' + a_0\ y = 0,\tag{51}
\end{equation}
can be found through the following steps...
- Step 1: Solve the Characteristic Equation
Solve the characteristic equation (CE)
\begin{equation*}
a_n\ r^{n} + a_{n-1}\ r^{n-1} + \cdots + a_2\ r^2 + a_1\ r + a_0 = 0,
\end{equation*}
- Step 2: Write Down the General Solution