Specific-Roadmap.
\begin{equation*}
\small\ul{\quad\ \textbf{Original Domain}\ \quad}
\end{equation*}
\begin{equation*}
\small\DLBa\textbf{2οΈβ£ Laplace Domain}
\end{equation*}
\begin{gather*}
\small \os{\vphantom{m}}{ y''' + y'' - y' - y = 0 }\\
\small y(0) = 1,\ y'(0) = 0,\ y''(0) = -1\\
\small \os{\large πΊ πΊ πΊ πΊ πΊ}{\text{Differential Equation}}\\
\\
\small \us{\large π» π» π» π» π»}{\text{Solution}}\\
\small y(t) = -\frac12e^{t} - \frac12e^{-t}
\end{gather*}
\begin{gather*}
\small \underrightarrow{\text{1οΈβ£ Forward}}\\
\small \text{Apply}\ \laplacesym\\
\\
\\
\\
\small \text{Apply}\ \laplacesym^{-1}\\
\small \overleftarrow{\text{3οΈβ£ Backward}}
\end{gather*}
\begin{align*}
\amp\small\DLBa s^3Y + s^2 + 1 + s^2Y + s\\
\amp\small\DLBa \qquad\qquad - sY - 1 - Y = 0\\
\amp\small\qquad\qquad {\Big\downarrow}\quad\text{Solve for}\ Y\\
\amp\small\DLBa Y(s) = \frac{-s^2 - s}{s^3 + s^2 - s - 1}\\
\amp\small\qquad\qquad {\Big\downarrow}\ \ \text{Prepare for Inverse}\\
\amp\small\DLBa Y(s) = -\frac12\frac{1}{s - 1} - \frac12\frac{1}{s + 1}
\end{align*}
\begin{gather*}
\lap{y''' + y'' - y' - y} = \lap{0}\\
s^3Y - s^2y(0) - sy'(0) - y''(0) + s^2Y - sy(0) - y'(0) - (sY - y(0)) - Y = 0\\
s^3Y - s^2(-1) - (-1) + s^2Y - s(-1) - (sY - (-1)) - Y = 0\\
s^3Y + s^2 + 1 + s^2Y + s - sY - 1 - Y = 0
\end{gather*}
\begin{align*}
(s^3 + s^2 - s - 1)Y \amp = -s^2 - s\\
Y(s) \amp = \frac{-s^2 - s}{s^3 + s^2 - s - 1}
\end{align*}
This denominator factors by grouping:
\begin{align*}
s^3 + s^2 - s - 1 \amp = s^2(s + 1) - (s + 1)\\
\amp = (s^2 - 1)(s + 1) = (s - 1)(s + 1)^2
\end{align*}
Before jumping to PFD, simplify
\(Y\) as much as possible first:
\begin{equation*}
Y(s) = \frac{-s^2 - s}{(s - 1)(s + 1)^2} = \frac{-s(s + 1)}{(s - 1)(s + 1)^2} = \frac{-s}{(s - 1)(s + 1)}
\end{equation*}
Now PFD is a little easier. Here is the general form:
\begin{equation*}
Y(s) = \frac{-s}{(s - 1)(s + 1)} = \frac{A}{s - 1} + \frac{B}{s + 1}
\end{equation*}
Applying the standard process gives:
\(A = -\sfrac12\text{,}\) \(B = -\sfrac12\)
So the prepared
\(Y\) is:
\begin{equation*}
Y(s) = \frac{-\sfrac12}{s - 1} + \frac{-\sfrac12}{s + 1}
\end{equation*}
Take the inverse Laplace transform term by term:
\begin{gather*}
y(t) = -\frac12\ilap{\frac{1}{s - 1}} - \frac12\ilap{\frac{1}{s + 1}}
\end{gather*}
\begin{equation*}
y(t) = -\frac12e^{t} - \frac12e^{-t}
\end{equation*}