We might begin by isolating the exponential that contains \(x\) and then taking the natural log of both sides.
\begin{align*}
e^{3x+z} - e^z \amp = y\\
e^{3x+z} \amp = y + e^z\\
\knowl{./knowl/xref/ln_rule_01.html}{\text{\(\overset{L_1}{\hookrightarrow}\qquad\)}}
\ln\big(e^{3x+z}\big) \amp = \ln\big(y + e^z\big)\\
3x + z \amp = \ln\big(y + e^z\big)\\
3x \amp = \ln\big(y + e^z\big) - z\\
x \amp = \frac{1}{3}\ln\big(y + e^z\big) - \frac{1}{3}z
\end{align*}
Itβs worth noting that we cannot break up that log on the right hand side. Thereβs no "rule" that helps when we have addition inside a logarithm.
There is another way to approach this if notice that \(z\) appears inside both exponential terms.
\begin{align*}
\knowl{./knowl/xref/exp_rule_02e.html}{\text{\(\overset{E_2}{\hookrightarrow}\qquad\)}}
e^{3x+z} - e^z \amp = y\\
e^{3x}\cdot e^{z} - e^z \amp = y\\
e^z(e^{3x} - 1) \amp = y\\
e^{3x} - 1 \amp = \frac{y}{e^z}
\knowl{./knowl/xref/exp_rule_04e.html}{\text{\(\qquad\overset{E_4}{\hookleftarrow}\)}}\\
e^{3x} - 1 \amp = ye^{-z}\\
e^{3x} \amp = ye^{-z} + 1\\
\knowl{./knowl/xref/ln_rule_01.html}{\text{\(\overset{L_1}{\hookrightarrow}\qquad\)}}
\ln\big( e^{3x} \big) \amp = \ln \big( ye^{-z} + 1\big)\\
3x \amp = \ln \big( ye^{-z} + 1 \big)\\
x \amp = \frac{1}{3}\ln\big(ye^{-z}+1\big)
\end{align*}
The answers may look different, but they are equivalent and both are correct.