Skip to main content
Logo image

Section Improper Integrals

There are two types of improper integrals; the only type we’ll be looking at in differential equations are the type where the upper limit of the integral is infinity. When we see improper integrals, we re-write the integral as a limit as follows.
\begin{equation*} \int_0^{\infty} f(x)dx = \lim_{b \to \infty} \int_0^b f(x) dx \end{equation*}
We don’t have to use \(b\) for the placeholder in the limit, but we shouldn’t use any of the variables that is already in the integrand; in the above, we should not use \(x\) or \(f\text{.}\) Once we’ve written the improper integral as a limit, we integrate and use the fundamental theorem of calculus, keeping the limit as we go, and we evaluate the limit at the very end. Here’s an example.

🌌 Example 326. Compute \(\int_1^{\infty} \frac{1}{x^2}dx\).

\begin{align*} \int_1^{\infty} \frac{1}{x^2}dx \amp = \lim_{b \to \infty} \int_1^b \frac{1}{x^2}dx \\ \amp = \lim_{b \to \infty} \int_1^b x^{-2} dx \\ \amp = \lim_{b \to \infty} \Bigg[ -x^{-1} \Bigg]_1^b \\ \amp = \lim_{b \to \infty} \left[ -\frac{1}{x} \right]_1^b \\ \amp = \lim_{b \to \infty} \left[ -\frac{1}{b} - \left(-\frac{1}{1}\right) \right] \\ \amp = \lim_{b \to \infty} \left[ -\frac{1}{b} +1 \right] \\ \amp = \lim_{b \to \infty} \left[ -\frac{1}{b}\right] + \lim_{b \to \infty} 1 \\ \amp = 0 + 1 \\ \amp = 1 \end{align*}
If you want more of a refresher, check out your Calculus 2 book (available online-- just search for "APEX calculus").
Evaluate the following integrals. Use proper limit notation.
  1. \(\ds \int_0^{\infty}e^{-3t}dt \qquad\)
    Solution.
    \begin{align*} \int_0^{\infty}e^{-3t}dt \amp = \lim_{b \to \infty}\int_0^b e^{-3t}dt \\ \amp = \lim_{b \to \infty}\left[-\frac{1}{3}e^{-3t} \right]_0^b \\ \amp = \lim_{b \to \infty}\left[-\frac{1}{3}e^{-3b} + \frac{1}{3}e^{-3\cdot 0} \right] \\ \amp = \lim_{b \to \infty}\left[-\frac{1}{3}e^{-3b} + \frac{1}{3}\cdot 1 \right] \\ \amp = \lim_{b \to \infty}\left[-\frac{1}{3}e^{-3b}\right] + \lim_{b \to \infty}\left[\frac{1}{3} \right] \\ \amp = -\frac{1}{3} \lim_{b \to \infty}\left[e^{-3b}\right] + \frac{1}{3} \\ \amp = -\frac{1}{3} \cdot 0+ \frac{1}{3} \\ \amp = \frac{1}{3} \end{align*}
    Answer.
    \(\ds \frac{1}{3} \)
  2. \(\ds \int_0^{\infty}e^{-st}dt\text{,}\) where \(s\) is a constant and \(s>0 \qquad\)
    Solution.
    \begin{align*} \int_0^{\infty}e^{-st}dt \amp = \lim_{b \to \infty}\int_0^b e^{-st}dt \\ \amp = \lim_{b \to \infty}\left[-\frac{1}{s}e^{-st} \right]_0^b \\ \amp = \lim_{b \to \infty}\left[-\frac{1}{s}e^{-sb} + \frac{1}{s}e^{-s\cdot 0} \right] \\ \amp = \lim_{b \to \infty}\left[-\frac{1}{s}e^{-sb} + \frac{1}{s}\cdot 1 \right] \\ \amp = \lim_{b \to \infty}\left[-\frac{1}{s}e^{-sb}\right] + \lim_{b \to \infty}\left[\frac{1}{s} \right] \\ \amp = -\frac{1}{s} \lim_{b \to \infty}\left[e^{-sb}\right] + \frac{1}{s} \\ \amp = -\frac{1}{s} \cdot 0+ \frac{1}{3} \\ \amp = \frac{1}{s} \end{align*}
    Answer.
    \(\ds \frac{1}{s} \)
You have attempted of activities on this page.