Skip to main content
Logo image

Section Lโ€™Hospitalโ€™s Rule

Consider the following three limits.
\begin{equation*} (1)\quad\lim_{x\to\infty} \frac{x^2 + 4x}{x} \qquad (2)\quad\lim_{x\to\infty} \frac{x}{x^2 + 4x} \qquad (3)\quad\lim_{x\to\infty} \frac{x^2 + 4x}{x^2} \end{equation*}
Typically when we evaluate limits, we first attempt a direct substitution. Note that all three evaluate to the indeterminant form \(\ds\frac{\infty}{\infty}\text{.}\) Since these are all rational functions, we have some algebraic techniques we can try. Hereโ€™s one way each can be evaluated.
\begin{align*} (1)\quad\amp\lim_{x\to\infty} \frac{x^2 + 4x}{x} = \lim_{x\to\infty} \frac{x(x + 4)}{x} = \lim_{x\to\infty} \left[ x+4 \right] = \infty \\ \\ (2)\quad\amp\lim_{x\to\infty} \frac{x}{x^2 + 4x} = \lim_{x\to\infty} \frac{x}{x(x + 4)} = \lim_{x\to\infty} \frac{1}{x + 4} = 0 \\ \\ (3)\quad\amp\lim_{x\to\infty} \frac{x^2 + 4x}{x^2} = \lim_{x\to\infty} \left[ 1 + \frac{4}{x}\right] = 1 + 0 = 1 \end{align*}
Is this result surprising to you? Each had the same value, \(\ds\frac{\infty}{\infty}\text{,}\) when we did direct substitution, but each has a different final answer. Thatโ€™s what it means to be indeterminant. we canโ€™t tell what the answer is just based on knowing that direct substitution yields \(\ds\frac{\infty}{\infty}\text{.}\)
We can do algebra when we have rational functions, but that doesnโ€™t work as well when we have exponential and trig functions. One technique you might consider using when you have indeterminant forms like \(\ds\frac{0}{0}\) or \(\ds\frac{\infty}{\infty}\) is Lโ€™Hospitalโ€™s Rule. Hereโ€™s a reminder.
Lโ€™Hospitalโ€™s Rule. Suppose \(f\) and \(g\) are differentiable functions and we want to evaluate
\begin{equation*} \lim_{x \to c} \frac{f(x)}{g(x)} \end{equation*}
If direct substitution yields an indeterminant form \(\ds\frac{0}{0}\) or \(\pm \frac{\infty}{\infty},\) then
\begin{equation*} \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}, \end{equation*}
assuming that the limit exists.
Hereโ€™s how it works for one of the limits above.
\begin{align*} \lim_{x\to\infty} \frac{x^2 + 4x}{x^2} \amp = \lim_{x\to\infty} \frac{\frac{d}{dx}\big( x^2 + 4x \big)}{\frac{d}{dx}\big(x^2\big)} \text{ (by L'Hospital's Rule)} \\ \amp = \lim_{x\to\infty} \frac{2x + 4}{2x} \\ \amp = \lim_{x\to\infty} \frac{\frac{d}{dx}\big( 2x + 4 \big)}{\frac{d}{dx}\big( 2x \big)} \text{ (by L'Hospital's Rule)} \\ \amp = \lim_{x\to\infty} \frac{2+0}{2} \\ \amp = \lim_{x\to\infty} 1 \\ \amp = 1 \end{align*}
Recall that we MUST check to make sure that the limit is one of those indeterminant forms before we use Lโ€™Hospitalโ€™s Rule. (And note that we did get the same answer we got before...which is good!)
If you want a more complete discussion and some examples, you can find more in your Calculus 1 book, which is available for free online (just search for "APEX calculus").
Evaluate each of the following limits. Use Lโ€™Hospitalโ€™s Rule only if it applies.
  1. \(\ds \lim_{b\to \infty} \frac{b}{e^b}\)
    Solution.
    \(\ds \lim_{b\to \infty} \frac{b}{e^b} = \ub{\lim_{b\to \infty} \frac{1}{e^b}}_\left(= \frac{1}{\infty}\right) = 0 \)
    Answer.
  2. \(\ds\ds \lim_{b\to \infty} be^{-3b}\)
    Solution.
    \(\ds \lim_{b\to \infty} be^{-3b} = \ub{\lim_{b\to \infty} \frac{b}{e^{3b}}}_\left(= \frac{\infty}{\infty}\right) = \ub{\lim_{b\to \infty} \frac{1}{3e^{3b}}}_\left(= \frac{1}{\infty}\right) = 0 \)
    Answer.
  3. \(\ds \lim_{b\to \infty} \left[ -\frac{1}{5}be^{-5b} - \frac{1}{25}e^{-5b} - \frac{1}{25} \right]\)
    Solution.
    \begin{align*} \lim_{b\to \infty} \left[ -\frac{1}{5}be^{-5b} - \frac{1}{25}e^{-5b} - \frac{1}{25} \right] \amp = \lim_{b\to \infty} \left[ -\frac{1}{5}be^{-5b}\right] \\ \amp = -\frac{1}{5}\lim_{b\to \infty} \left[ be^{-5b}\right] \\ \amp = -\frac{1}{5}\lim_{b\to \infty} \left[ \frac{b}{e^{5b}}\right] \\ \amp = -\frac{1}{5}\lim_{b\to \infty} \left[ \frac{1}{5e^{5b}}\right] -0 - \frac{1}{25}\\ \amp = -\frac{1}{5}\cdot 0 - \frac{1}{25}\\ \amp = 0 - \frac{1}{25}\\ \amp = - \frac{1}{25} \end{align*}
    Answer.
    \(\ds - \frac{1}{25} \)
  4. \(\ds \lim_{b\to \infty} \left[ -\frac{1}{s}be^{-sb} - \frac{1}{s^2}e^{-sb} - \frac{1}{s^2} \right],\) where \(s\) is a constant and \(s \gt 0\)
    Solution.
    \begin{align*} \lim_{b\to \infty} \left[ -\frac{1}{s}be^{-sb} - \frac{1}{s^2}e^{-sb} - \frac{1}{s^2} \right] \amp = \lim_{b\to \infty} \left[ -\frac{1}{s}be^{-sb}\right] \\ \amp = -\frac{1}{s}\lim_{b\to \infty} \left[ \frac{b}{e^{sb}}\right] \\ \amp = -\frac{1}{s}\lim_{b\to \infty} \left[ \frac{1}{se^{sb}}\right] - \frac{1}{s^2}\cdot 0 - \frac{1}{s^2}\\ \amp = -\frac{1}{s}\cdot 0 - \frac{1}{s^2}\\ \amp = - \frac{1}{s^2} \end{align*}
    Answer.
    \(\ds - \frac{1}{s^2} \)
You have attempted of activities on this page.