We can take the LT of each DE, starting with the first DE. We will then solve for\(\ds X(s). \)
\begin{align*}
y' - 2x \amp = 1\\
\lap{ y' - 2x } \amp = \lap{ 1 }\\
sY(s) -y(0) - 2X(s) \amp = \frac{1}{s}\\
sY(s) - 0 - 2X(s) \amp = \frac{1}{s}\\
sY(s) \amp = \frac{1}{s}+ 2X(s)\\
Y(s) \amp = \frac{1}{s^2} + \frac{2}{s}X(s)
\end{align*}
Now we take the LT of the second DE. We will substitute in for\(\ds Y(s) \) using the result we found above.
\begin{align*}
x' + y' - 3x - 3y \amp = 2 \\
\lap{ x' + y' - 3x - 3y } \amp = \lap{2} \\
sX(s) - x(0) + sY(s) - y(0) - 3X(s) - 3Y(s) \amp = \frac{2}{s} \\
sX(s) - 0 + sY(s) - 0 - 3X(s) - 3Y(s) \amp = \frac{2}{s} \\
sX(s) - 3X(s) + (s-3) Y(s) \amp = \frac{2}{s} \\
sX(s) - 3X(s) + (s-3)\left[ \frac{1}{s^2} + \frac{2}{s}X(s) \right] \amp = \frac{2}{s} \\
sX(s) - 3X(s) + \frac{s-3}{s^2} + \frac{2(s-3)}{s}X(s) \amp = \frac{2}{s} \\
sX(s) - 3X(s) + \frac{2(s-3)}{s}X(s) \amp = \frac{2}{s} - \frac{s-3}{s^2} \\
s^2 \cdot \left[sX(s) - 3X(s) + \frac{2(s-3)}{s}X(s)\right] \amp = s^2\cdot \left[\frac{2}{s} - \frac{s-3}{s^2}\right] \\
s^3X(s) - 3s^2X(s) + 2s(s-3)X(s) \amp = 2s - (s-3) \\
X(s) [s^3 - 3s^2 + (2s^2 - 6s)] \amp = 2s - s + 3 \\
X(s) [s^3 - s^2 - 6s] \amp = s+3 \\
X(s) \amp = \frac{s+3}{s^3 - s^2 - 6s} \\
\amp = \frac{s+3}{s(s^2 - s - 6)} \\
\amp = \frac{s+3}{s(s-3)(s+2)}
\end{align*}
We now substitute this back into equation.
\begin{align*}
Y(s) \amp = \frac{1}{s^2} + \frac{2}{s}X(s) \\
\amp = \frac{1}{s^2} + \frac{2}{s}\cdot \frac{s+3}{s(s-3)(s+2)} \\
\amp = \frac{1}{s^2} + \frac{2(s+3)}{s^2(s-3)(s+2)} \\
\amp = \frac{1}{s^2}\cdot \frac{(s-3)(s+2)}{(s-3)(s+2)} + \frac{2(s+3)}{s^2(s-3)(s+2)} \\
\amp = \frac{(s-3)(s+2) + 2(s+3)}{s^2(s-3)(s+2)} \\
\amp = \frac{s^2 - s - 6 + 2s + 6}{s^2(s-3)(s+2)} \\
\amp = \frac{s^2 + s}{s^2(s-3)(s+2)} \\
\amp = \frac{s(s+1)}{s^2(s-3)(s+2)} \\
\amp = \frac{s+1}{s(s-3)(s+2)}
\end{align*}
We need only take the inverse LT of each function in order to solve for the desired function \(\ds x(t) \) an \(\ds y(t). \) This means we will need to find a partial fraction decomposition for each.
\begin{align*}
\frac{s+3}{s(s-3)(s+2)} \amp = \frac{A}{s} + \frac{B}{s-3} + \frac{C}{s+2} \\
s+3 \amp = A(s-3)(s+2) + B(s)(s+2) + C(s)(s-3) \\
0s^2 + s + 3 \amp = A(s^2 - s - 6) + B(s^2 + 2s) + C(s^2 - 3s) \\
\amp = As^2 - As - 6A + Bs^2 + 2Bs + Cs^2 - 3Cs \\
\amp = (A+B+C)s^2 + (-A + 2B- 3C)s + (-6A)
\end{align*}
\begin{align*}
A+B+C \amp = 0 \amp -A + 2B - 3C \amp = 1 \amp -6A \amp = 3 \\
\amp \amp \amp \amp A \amp = -\frac{1}{2} \\
B + C \amp = -A \amp 2B - 3C \amp = 1 + A \amp \amp \\
B + C \amp = -\left( -\frac{1}{2} \right) \amp 2B - 3C \amp = 1 + \left( -\frac{1}{2} \right) \amp \amp \\
B + C \amp = \frac{1}{2} \amp 2B - 3C \amp = \frac{1}{2} \amp \amp \\
C \amp = \frac{1}{2} - B \amp \amp \amp \amp \\
\amp \amp 2B - 3\left( \frac{1}{2} - B \right) \amp = \frac{1}{2} \amp \amp \\
\amp \amp 2B - \frac{3}{2} + 3B \amp = \frac{1}{2} \amp \amp \\
\amp \amp 5B \amp = \frac{1}{2} + \frac{3}{2} \amp \amp \\
\amp \amp 5B \amp = 2 \amp \amp \\
\amp \amp B \amp = \frac{2}{5} \amp \amp \\
C \amp = \frac{1}{2} - B \amp \amp \amp \amp \\
\amp = \frac{1}{2} - \frac{2}{5} \amp \amp \amp \amp \\
\amp = \frac{1}{10} \amp \amp \amp \amp
\end{align*}
Hence,
\begin{align*}
X(s) \amp = \frac{-\frac{1}{2}}{s} + \frac{\frac{2}{5}}{s-3} + \frac{\frac{1}{10}}{s+2}\\
\amp = -\frac{1}{2}\cdot \frac{1}{s} + \frac{2}{5}\cdot \frac{1}{s-3} + \frac{1}{10}\cdot \frac{1}{s+2}
\end{align*}
Similarly, we will find a partial fraction decomposition for\(\ds Y(s). \)
\begin{align*}
\frac{s+1}{s(s-3)(s+2)} \amp = \frac{A}{s} + \frac{B}{s-3} + \frac{C}{s+2} \\
s+1 \amp = A(s-3)(s+2) + B(s)(s+2) + C(s)(s-3) \\
0s^2 + s + 1 \amp = A(s^2 - s - 6) + B(s^2 + 2s) + C(s^2 - 3s) \\
\amp = As^2 - As - 6A + Bs^2 + 2Bs + Cs^2 - 3Cs \\
\amp = (A+B+C)s^2 + (-A + 2B- 3C)s + (-6A)
\end{align*}
\begin{align*}
A+B+C \amp = 0 \amp -A + 2B - 3C \amp = 1 \amp -6A \amp = 1 \\
\amp \amp \amp \amp A \amp = -\frac{1}{6} \\
B + C \amp = -A \amp 2B - 3C \amp = 1 + A \amp \amp \\
B + C \amp = -\left( -\frac{1}{6} \right) \amp 2B - 3C \amp = 1 + \left( -\frac{1}{6} \right) \amp \amp \\
B + C \amp = \frac{1}{6} \amp 2B - 3C \amp = \frac{5}{6} \amp \amp \\
C \amp = \frac{1}{6} - B \amp \amp \amp \amp \\
\amp \amp 2B - 3\left( \frac{1}{6} - B \right) \amp = \frac{5}{6} \amp \amp \\
\amp \amp 2B - \frac{1}{2} + 3B \amp = \frac{5}{6} \amp \amp \\
\amp \amp 5B \amp = \frac{5}{6} + \frac{1}{2} \amp \amp \\
\amp \amp 5B \amp = \frac{4}{3} \amp \amp \\
\amp \amp B \amp = \frac{4}{15} \amp \amp \\
C \amp = \frac{1}{6} - B \amp \amp \amp \amp \\
\amp = \frac{1}{6} - \frac{4}{15}\amp \amp \amp \amp \\
\amp = \frac{5}{30} - \frac{8}{30}\amp \amp \amp \amp \\
\amp = -\frac{1}{10} \amp \amp \amp \amp
\end{align*}
Hence,
\begin{align*}
Y(s) \amp = \frac{-\frac{1}{6}}{s} + \frac{\frac{4}{15}}{s-3} + \frac{-\frac{1}{10}}{s+2}\\
\amp = -\frac{1}{6}\cdot \frac{1}{s} + \frac{4}{15}\cdot \frac{1}{s-3} - \frac{1}{10}\cdot \frac{1}{s+2}
\end{align*}
Now we need only find the inverse LT of equations.
\begin{align*}
x(t) \amp = \lap^{-1}\left\{ X(s) \right\} \\
\amp = \lap^{-1}\left\{ -\frac{1}{2}\cdot \frac{1}{s} + \frac{2}{5}\cdot \frac{1}{s-3} + \frac{1}{10}\cdot \frac{1}{s+2} \right\} \\
\amp = -\frac{1}{2}\lap^{-1}\left\{ \frac{1}{s} \right\} + \frac{2}{5} \lap^{-1}\left\{ \frac{1}{s-3} \right\} + \frac{1}{10}\lap^{-1}\left\{ \frac{1}{s+2} \right\} \\
\amp = -\frac{1}{2} + \frac{2}{5}e^{3t} + \frac{1}{10}e^{-2t} \\
y(t) \amp = \lap^{-1}\left\{ Y(s) \right\} \\
\amp = \lap^{-1}\left\{ -\frac{1}{6}\cdot \frac{1}{s} + \frac{4}{15}\cdot \frac{1}{s-3} - \frac{1}{10}\cdot \frac{1}{s+2} \right\} \\
\amp = -\frac{1}{6}\lap^{-1}\left\{ \frac{1}{s} \right\} + \frac{4}{15}\lap^{-1}\left\{ \frac{1}{s-3} \right\} - \frac{1}{10} \lap^{-1}\left\{ \frac{1}{s+2} \right\} \\
\amp = -\frac{1}{6}+ \frac{4}{15}e^{3t} - \frac{1}{10} e^{-2t}
\end{align*}
Thus, the solution to this system is
\begin{align*}
x(t) \amp = -\frac{1}{2} + \frac{2}{5}e^{3t} + \frac{1}{10}e^{-2t} \\
y(t) \amp = -\frac{1}{6}+ \frac{4}{15}e^{3t} - \frac{1}{10} e^{-2t}
\end{align*}
We can verify that this is the solution.
\begin{align*}
\mbox{LHS of first DE} \amp = y' - 2x \\
\amp = \frac{d}{dt}\left( -\frac{1}{6}+ \frac{4}{15}e^{3t} - \frac{1}{10} e^{-2t} \right) - 2\Big( -\frac{1}{2} + \frac{2}{5}e^{3t} + \frac{1}{10}e^{-2t} \Big) \\
\amp = \left( 0 + \frac{4}{5}e^{3t} + \frac{1}{5} e^{-2t} \right) + 1 - \frac{4}{5}e^{3t} - \frac{1}{5}e^{-2t} \\
\amp = 1 \\
\amp = \mbox{RHS of first DE} \\
\mbox{RHS of second DE} \amp = x' + y' - 3x - 3y \\
\amp = \frac{d}{dt}\left( -\frac{1}{2} + \frac{2}{5}e^{3t} + \frac{1}{10}e^{-2t} \right) + \frac{d}{dt}\left( -\frac{1}{6}+ \frac{4}{15}e^{3t} - \frac{1}{10} e^{-2t} \right) \\
\amp \mbox{}\hspace{1cm} - 3 \left( -\frac{1}{2} + \frac{2}{5}e^{3t} + \frac{1}{10}e^{-2t} \right) - 3 \left( -\frac{1}{6}+ \frac{4}{15}e^{3t} - \frac{1}{10} e^{-2t} \right) \\
\amp = \left(0 + \frac{6}{5}e^{3t} - \frac{1}{5}e^{-2t} \right) + \left( 0 + \frac{4}{5}e^{3t} + \frac{1}{5} e^{-2t} \right) \\
\amp \mbox{}\hspace{1cm} + \frac{3}{2} - \frac{6}{5}e^{3t} - \frac{3}{10}e^{-2t} + \frac{1}{2} - \frac{4}{5}e^{3t} + \frac{3}{10} e^{-2t} \\
\amp = \left( \frac{6}{5} + \frac{4}{5} - \frac{6}{5} - \frac{4}{5} \right)e^{3t} + \left( - \frac{1}{5} + \frac{1}{5} - \frac{3}{10} + \frac{3}{10} \right)e^{2t} + \left( \frac{3}{2} + \frac{1}{2} \right) \\
\amp = 0 + 0 + 2 \\
\amp = 2 \\
\amp = \mbox{RHS of second DE} \\
x(0) \amp = -\frac{1}{2} + \frac{2}{5}e^{3\cdot 0} + \frac{1}{10}e^{-2\cdot 0} \\
\amp = -\frac{1}{2} + \frac{2}{5} + \frac{1}{10} \\
\amp = -\frac{5}{10} + \frac{4}{10} + \frac{1}{10} \\
\amp = 0 \\
y(0) \amp = -\frac{1}{6} + \frac{4}{15}e^{3\cdot 0} - \frac{1}{10} e^{-2\cdot 0} \\
\amp = -\frac{1}{6} + \frac{4}{15} - \frac{1}{10} \\
\amp = -\frac{5}{30} + \frac{8}{30} - \frac{3}{30} \\
\amp = 0
\end{align*}
Hence, the solution satisfies both DEs and both initial conditions.