Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next Scratch ActiveCode Profile
\(\newcommand\DLGray{\color{Gray}}
\newcommand\DLO{\color{BurntOrange}}
\newcommand\DLRa{\color{WildStrawberry}}
\newcommand\DLGa{\color{Green}}
\newcommand\DLGb{\color{PineGreen}}
\newcommand\DLBa{\color{RoyalBlue}}
\newcommand\DLBb{\color{Cerulean}}
\newcommand\ds{\displaystyle}
\newcommand\ddx{\frac{d}{dx}}
\newcommand\os{\overset}
\newcommand\us{\underset}
\newcommand\ob{\overbrace}
\newcommand\obt{\overbracket}
\newcommand\ub{\underbrace}
\newcommand\ubt{\underbracket}
\newcommand\ul{\underline}
\newcommand\laplacesym{\mathscr{L}}
\newcommand\lap[1]{\laplacesym\left\{#1\right\}}
\newcommand\ilap[1]{\laplacesym^{-1}\left\{#1\right\}}
\newcommand\tikznode[3][]
{\tikz[remember picture,baseline=(#2.base)]
\node[minimum size=0pt,inner sep=0pt,#1](#2){#3};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\newcommand{\sfrac}[2]{{#1}/{#2}}
\)
Section Finding a Point on a Line
Once we have an equation for a lineβespecially in point-slope formβwe can easily find any point on that line by substituting in a value for
\(x\) and solving for
\(y\text{.}\) This is a basic but important skill when working with solutions to differential equations. For example, when using Eulerβs method or interpreting a slope field, we often want to know the value of the solution at a particular
\(x\) -value.
π Example 308 . Finding a Point Given \(x\) .
The line \(L\) is given by the equation:
\begin{equation*}
y - 3 = -2(x - 5)
\end{equation*}
Find the coordinates of the point on \(L\) with \(x = 6\text{.}\)
Answer .
\begin{equation*}
(6, 1)
\end{equation*}
Solution .
Substitute
\(x = 6\) into the equation and solve for
\(y\text{:}\)
\begin{align*}
y - 3 \amp = -2(6 - 5)\\
y - 3 \amp = -2\\
y \amp = 1
\end{align*}
So the desired point is
\((6, 1)\text{.}\)
Use the given equation of a line in point-slope form to find the point on the line with the specified
\(x\) -value.
Exercises Exercises
1.
\(y - 1 = 3(x - 9)\text{,}\) ββ\(x = 2\) 2.
\(y + 3 = \frac{1}{2}(x - 1)\text{,}\) ββ\(x = 2\) 3.
\(y + 1 = 7x\text{,}\) ββ\(x = -1\) You have attempted
of
activities on this page.