The characteristic equation is:
\begin{equation*}
r^4 - 5r^2 + 4 = 0
\end{equation*}
Use the substitution,
\(u = r^2\text{,}\) to reveal a quadratic in disguise:
\begin{align*}
u^2 - 5u + 4 \amp = 0\\
(u - 4)(u - 1) \amp = 0
\end{align*}
Reverse the substitution,
\(u = r^2\text{,}\) back into
\(r\text{:}\)
\begin{align*}
(r^2 - 4)(r^2 - 1) \amp = 0\\
(r - 2)(r + 2)(r - 1)(r + 1) \amp = 0
\end{align*}
\begin{equation*}
r = -2,\ 2,\ -1,\ 1
\end{equation*}
\begin{equation*}
\Rightarrow\quad y = c_1 e^{x} + c_2 e^{-x} + c_3 e^{2x} + c_4 e^{-2x}
\end{equation*}