π Example 303. Repeated Root.
Solve \(4x^2 + 12x + 9 = 0\text{.}\)
Solution.
Factoring: Try factoring directly:
\begin{align*}
4x^2 + 12x + 9 \amp = 0\\
(2x + 3)(2x + 3) \amp = 0\\
2x + 3 = 0 \amp \Rightarrow x = -\frac{3}{2}
\end{align*}
This gives a repeated root, also called a double root.
Quadratic formula:
\begin{align*}
x \amp = \frac{-12 \pm \sqrt{144 - 144}}{8}\\
x \amp = \frac{-12}{8} = -\frac{3}{2}
\end{align*}
Completing the square:
\begin{align*}
4x^2 + 12x + 9 \amp = 0\\
4x^2 + 12x \amp = -9\\
x^2 + 3x \amp = -\frac{9}{4}\\
x^2 + 3x + \frac{9}{4} \amp = 0\\
\left(x + \frac{3}{2}\right)^2 \amp = 0\\
x \amp = -\frac{3}{2}
\end{align*}