Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next Scratch ActiveCode Profile
\(\newcommand\DLGray{\color{Gray}}
\newcommand\DLO{\color{BurntOrange}}
\newcommand\DLRa{\color{WildStrawberry}}
\newcommand\DLGa{\color{Green}}
\newcommand\DLGb{\color{PineGreen}}
\newcommand\DLBa{\color{RoyalBlue}}
\newcommand\DLBb{\color{Cerulean}}
\newcommand\ds{\displaystyle}
\newcommand\ddx{\frac{d}{dx}}
\newcommand\os{\overset}
\newcommand\us{\underset}
\newcommand\ob{\overbrace}
\newcommand\obt{\overbracket}
\newcommand\ub{\underbrace}
\newcommand\ubt{\underbracket}
\newcommand\ul{\underline}
\newcommand\laplacesym{\mathscr{L}}
\newcommand\lap[1]{\laplacesym\left\{#1\right\}}
\newcommand\ilap[1]{\laplacesym^{-1}\left\{#1\right\}}
\newcommand\tikznode[3][]
{\tikz[remember picture,baseline=(#2.base)]
\node[minimum size=0pt,inner sep=0pt,#1](#2){#3};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\newcommand{\sfrac}[2]{{#1}/{#2}}
\)
Section Chapter 9 Exercises
Reading Questions α―β
β Quick-Answer Questions
1. Multiple-Choice.
(a) Key Concepts Behind Laplace Transforms.
Which two core mathematical ideas does the Laplace transform method rely on to solve differential equations?
Chain Rule
Incorrect. The chain rule is not central to the Laplace transform method. Think about a process that lets you transfer derivatives.
Product Rule
No, the product rule is not a key idea in the Laplace transform method. Consider an integration-based technique.
Integration by Parts
Correct! Integration by parts allows derivatives to be transferred between functions inside an integral, a foundational technique in the Laplace method.
Properties of Exponential Functions
Correct! The method uses properties of exponential functions, especially their predictable behavior under differentiation and integration.
(b) πβ Limit of \(b^3/e^{6b}\) .
What is the value of
\(\ds \lim_{b \to \infty} \frac{b^3}{e^{6b}}\text{?}\)
\(\infty\)
No, exponential growth (\(e^{6b}\) ) grows faster than polynomial growth (\(b^3\) ) as \(b \to \infty\text{.}\) This pulls the ratio, \(\frac{b^3}{e^{6b}}\text{,}\) to zero.
\(0\)
Correct, exponential growth (\(e^{6b}\) ) grows faster than polynomial growth (\(b^3\) ) as \(b \to \infty\text{.}\) This pulls the ratio, \(\frac{b^3}{e^{6b}}\text{,}\) to zero. This can also be verified with LβHΓ΄pitalβs rule.
\(b^3\)
No, \(b\) goes to \(\infty\text{.}\) So the limit cannot have \(b\) in its value.
\(6\)
No, exponential growth (\(e^{6b}\) ) grows faster than polynomial growth (\(b^3\) ) as \(b \to \infty\text{.}\) This pulls the ratio, \(\frac{b^3}{e^{6b}}\text{,}\) to zero.
(c) πβ Fill in the Missing Value.
\(\ds\quad \lap{e^{3t}} = \frac{1}{s - \fillinmath{X}}\)
3
Correct! The Laplace transform of \(e^{3t}\) is \(\ds\frac{1}{s - 3}\text{.}\)
1
No, the exponent of \(e^{3t}\) is 3, not 1.
0
No, \(s - 0\) would imply a transform of 1, not \(e^{3t}\text{.}\)
-3
No, that would correspond to \(e^{-3t}\text{.}\) Watch the sign.
(d) πβ Laplace Transform of \(t\) .
\(\ds\frac{1}{s^2}\)
Correct! This matches the rule: \(\lap{t^n} = \frac{n!}{s^{n+1}}\) with \(n = 1\text{.}\)
\(\ds\frac{1}{s}\)
No, thatβs the transform of \(1\text{,}\) not \(t\text{.}\)
\(1\)
No, the transform of \(t\) is not a constant.
\(\ds\frac{2}{s^2}\)
No, the numerator should be \(1\text{,}\) not \(2\text{.}\)
(e) πβ Laplace Transform of \(t^2\) .
\(\ds\frac{2}{s^3}\)
Correct! The Laplace transform of \(t^2\) is \(\ds\frac{2!}{s^{2+1}} = \frac{2}{s^3}\text{.}\)
\(\ds\frac{1}{s^2}\)
No, thatβs the transform of \(t\text{,}\) not \(t^2\text{.}\)
\(1\)
No, \(\lap{t^2}\) is not a constant.
\(\ds\frac{2}{s^2}\)
No, double-check the exponent in the denominator, it should be \(3\text{,}\) not \(2\text{.}\)
Exercises ποΈ Drill: Forward Transforms
Transforming Single Functions.
1.
\(\ds \lap{e^{2t}} \) 2.
\(\ds \lap{e^{-9t}}\) 3.
\(\ds \lap{t^2} \) 4.
\(\ds \lap{t^9}\) 5.
\(\ds \lap{\sin (5t)} \) 6.
\(\ds \lap{\cos (-\pi t)} \) 7.
\(\ds \lap{t^{599}} \) 8.
\(\ds \lap{e^{0.0001 t}} \)
Transforming Combined Functions.
9.
\(\lap{15 - 4e^{9t} + 11t^3}\) 10.
\(\lap{e^{3t}\sin(6t) - t^3e^{-5t}}\) 11.
\(\lap{t^2 \cos(8t)}\) 12.
\(\lap{t^3 e^{-9t}}\) 13.
\(\lap{t^3 e^{-2t}}\) 14.
\(\lap{t\sin(3t)}\) 15.
\(\lap{e^{5t}\cos(4t)}\) 16.
\(\lap{e^{2t} - t^3 - \sin (5t)}\) 17.
\(\lap{e^{-2t}\sin(2t) + t^2 e^{3t}}\) 18.
\(\lap{8t\cos(6t) + e^{3t}\sin(4t)}\) 19.
\(\lap{t^2 \sin(3t)}\)
Exercises Definition of the Laplace Transform
Using the Definition.
1.
\(\ds \lap{11t}\) 2.
\(\ds \lap{7t + e^{5t}}\) 3.
\(\ds \lap{2.3 t^2}\) 4.
\(\ds \lap{-40e^{3t}}\) 5.
\(\lap{15}\) 6.
\(\lap{e^{7t}}\)
7. Use the properties of the Laplace transform the fact that
\begin{equation*}
\cos(3t) = \frac12\left(e^{3it} + e^{-3it}\right)
\end{equation*}
to show that
\begin{equation*}
\lap{\cos(3t)} = \frac{s}{s^2 + 9}\text{.}
\end{equation*}
8. Answer the following:
Compute the Laplace transform of \(\sin(-4t)\text{.}\)
Use (a) as a guide to show
\begin{equation*}
\lap{\sin(bt)} = \frac{b}{s^2 + b^2}, \quad s \gt 0\text{,}
\end{equation*}
for any constant
\(b\text{.}\)
9. By the definition of the Laplace transform:
\begin{equation*}
\lap{y'(t)} = \int_0^{\infty} y'(t) \cdot e^{-st} \ dt = \lim_{b\to \infty}\ub{\int_0^{b} y'(t) \cdot e^{-st} \ dt}_{I}\text{.}
\end{equation*}
Answer the following questions related to the Laplace transform of \(y'\text{.}\)
Use integration by parts to show that
\begin{equation*}
I = e^{-sb} \cdot y(b) - y(0) + s \int_0^{b} y(t) \cdot e^{-st} \ dt\text{.}
\end{equation*}
Solution .
Select \(u = e^{-st}\) and \(dv = y'(t) \ dt\text{.}\) Then
\begin{align*}
\int_0^{b} e^{-st} \cdot y' \ dt \amp = e^{-st} \cdot y(t)\bigg|_0^{b} - \int_0^{b} y(t) \cdot (-s e^{-st}) \ dt \\
\amp = e^{-sb} \cdot y(b) - e^{0} \cdot y(0) - (-s) \int_0^{b} y(t) \cdot e^{-st} \ dt \\
\amp = e^{-sb} \cdot y(b) - \cdot y(0) + s \int_0^{b} y(t) \cdot e^{-st} \ dt
\end{align*}
Use this \(I\) to show that
\begin{equation*}
\lap{y'} = \ub{\lim_{b \to \infty} \left(\frac{y(b)}{e^{sb}}\right)}_L - y(0) + s \lap{y}\text{.}
\end{equation*}
Solution .
Substitute \(I\) from (b) into the limit from (a).
\begin{align*}
\lap{y'} =\amp \lim_{b\to \infty} \left( e^{-sb} \cdot y(b) - y(0) + s \int_0^{b} y(t) \cdot e^{-st} \ dt \right)\\
=\amp \lim_{b\to \infty} \left( e^{-sb} \cdot y(b) \right) - \lim_{b\to \infty} y(0) + \lim_{b\to \infty} \left(s \int_0^{b} y(t) \cdot e^{-st} \ dt \right)\\
=\amp \lim_{b\to \infty} \left( e^{-sb} \cdot y(b) \right) - y(0) + s\lim_{b\to \infty} \left(\int_0^{b} y(t) \cdot e^{-st} \ dt \right)\\
=\amp \ub{\lim_{b \to \infty} \left(\frac{y(b)}{e^{sb}}\right)}_L - y(0) + s \lap{y}
\end{align*}
In order for
\(\lap{y'}\) to exist, what must be true?
Answer .
The limit,
\(L\text{,}\) must converge. That is, as
\(t\) gets large, the ratio,
\(\ds\frac{y(t)}{e^{st}}\text{,}\) flattens out to some number. In order to maintain this ratio, growth rate of
\(y(t)\) must be less than or equal to
\(e^{st}\text{.}\)
You have attempted
of
activities on this page.