π Laplace Transform of a Piecewise Function.
To find \(\lap{g(t)}\) for a piecewise function:
-
Combine and simplify terms so you have the fewest possible \(u_c(t)\)-switches.
True.
False.
Piece | Active Interval | Step Function Switch |
\begin{equation*}
2t
\end{equation*}
|
\begin{equation*}
0 \le t \lt 1
\end{equation*}
|
\begin{equation*}
u_0(t) - u_1(t)
\end{equation*}
|
\begin{equation*}
3
\end{equation*}
|
\begin{equation*}
1 \le t \lt 4
\end{equation*}
|
\begin{equation*}
u_1(t) - u_4(t)
\end{equation*}
|
\begin{equation*}
0
\end{equation*}
|
\begin{equation*}
t \ge 4
\end{equation*}
|
\begin{equation*}
u_4(t)
\end{equation*}
|