Skip to main content
Logo image

Section The Laplace Transform Reference Guide

In this final section, we summarize everything we’ve done. Below, you will find tables for the most common Laplace transforms and the properties used to combine and manipulate them. These will provide a useful resource in the next chapter where we begin solving differential equations using the Laplace transform method.

Subsection Laplace Transform Tables

We have done a lot of work computing common transforms and deriving the properties of the Laplace transform. Now, we can summarize all of this information in tables for quick reference.
We begin with the specific transforms of exponentials, polynomial terms, sine/cosine, and the products of these functions. In later chapters, we will encounter new types of functions that we need to transform, so this table will continue to grow as we go.
Table 199. Table of Common Laplace Transforms
Function
(\(t\)-Domain)
\begin{equation*} f(t) \end{equation*}
Laplace Transform
(\(s\)-Domain)
\begin{equation*} \lap{f(t)} = F(s) \end{equation*}

Existence
Condition
L\(_1\)
\begin{equation*} 1 \end{equation*}
\begin{equation*} \frac{1}{s} \end{equation*}
\begin{equation*} s > 0 \end{equation*}
L\(_2\)
\begin{equation*} e^{at} \end{equation*}
\begin{equation*} \frac{1}{s - a} \end{equation*}
\begin{equation*} s > a \end{equation*}
L\(_3\)
\begin{equation*} t^n \end{equation*}
\begin{equation*} \frac{n!}{s^{n+1}} \end{equation*}
\begin{equation*} s > 0 \end{equation*}
L\(_4\)
\begin{equation*} \sin(bt) \end{equation*}
\begin{equation*} \frac{b}{s^2+b^2} \end{equation*}
\begin{equation*} s > 0 \end{equation*}
L\(_5\)
\begin{equation*} \cos(bt) \end{equation*}
\begin{equation*} \frac{s}{s^2+b^2} \end{equation*}
\begin{equation*} s > 0 \end{equation*}
L\(_6\)
\begin{equation*} e^{at}\ t^n \end{equation*}
\begin{equation*} \frac{n!}{(s-a)^{n+1}} \end{equation*}
\begin{equation*} s > a \end{equation*}
L\(_7\)
\begin{equation*} e^{at}\sin(bt) \end{equation*}
\begin{equation*} \frac{b}{(s-a)^2+b^2} \end{equation*}
\begin{equation*} s > a \end{equation*}
L\(_8\)
\begin{equation*} e^{at}\cos(bt) \end{equation*}
\begin{equation*} \frac{s-a}{(s-a)^2+b^2} \end{equation*}
\begin{equation*} s > a \end{equation*}

Checkpoint 200. πŸ“–β“ What’s Missing in each Transform?

The next set of transforms are more general rules you can apply in different situations.
Table 201. Table of Laplace Transform Rules
Function (\(t\)-Domain) Laplace Transform (\(s\)-Domain) Existence
\begin{equation*} f(t) \end{equation*}
\begin{equation*} \lap{f(t)} = F(s) \end{equation*}
Condition
R\(_{1}\)
\begin{equation*} f'(t) \end{equation*}
\begin{equation*} sF(s) - f(0) \end{equation*}
\begin{equation*} s > 0 \end{equation*}
R\(_{2}\)
\begin{equation*} f''(t) \end{equation*}
\begin{equation*} s^2F(s) - sf(0) - f'(0) \end{equation*}
\begin{equation*} s > 0 \end{equation*}
R\(_{3}\)
\begin{equation*} f'''(t) \end{equation*}
\begin{equation*} s^3F(s) - s^2f(0) - sf'(0) - f''(0) \end{equation*}
\begin{equation*} s > 0 \end{equation*}
R\(_{4}\)
\begin{equation*} e^{at} f(t) \end{equation*}
\begin{equation*} F(s-a) \end{equation*}
\begin{equation*} s > 0 \end{equation*}
R\(_{5}\)
\begin{equation*} t^n f(t) \end{equation*}
\begin{equation*} (-1)^n \frac{d^n}{ds^n}\Big[F(s)\Big] \end{equation*}
\begin{equation*} s > 0 \end{equation*}
Finally, we list the Laplace transform properties. It is short for now, but we will add more to this table later.
Table 202. Table of Laplace Transform Properties
Property Type Property
P\(_{1}\) Linearity
\begin{equation*} \lap{ a f(t) \pm b g(t) } = a \lap{f(t)} \pm b \lap{g(t)} \end{equation*}

Subsection Next Step: Solving Differential Equations

Everything you’ve learned in this chapter prepares you to solve differential equations using the Laplace transform. In the next chapter, you will see how these tools turn the process of solving differential equations into solving simple algebraic equations, especially when initial conditions are involved.

Subsection πŸ“€ Wrap-Up

Check Your Understanding.

Checkpoint 203. πŸ€”πŸ’­ Separation of Variables Reading Questions.
(a) πŸ€”πŸ’­ Transform of \(\sin(5t)\).
\(\ds\lap{\sin(5t)} = \) ?
  • \(\ds\frac{5}{s^2 + 25}\)
  • Correct! This follows the formula \(\lap{\sin(bt)} = \frac{b}{s^2 + b^2}\) with \(b = 5\text{.}\)
  • \(\ds\frac{s}{s^2 + 25}\)
  • Incorrect. That’s the transform of \(\cos(5t)\text{,}\) not \(\sin(5t)\text{.}\)
  • \(\ds\frac{1}{s^2 + 25}\)
  • Incorrect. The frequency coefficient \(5\) must appear in the numerator.
  • \(\ds\frac{5}{s^2 + 5^2}\)
  • This is mathematically correct but not simplified. Choose the version with \(25\) in the denominator.
(b) πŸ€”πŸ’­ Transform of \(\cos(-3t)\).
\(\ds\lap{\cos(-3t)} = \) ?
  • \(\ds\frac{3}{s^2 + 9}\)
  • Incorrect. The numerator for cosine should be \(s\text{,}\) not the frequency.
  • \(\ds\frac{s}{s^2 - 9}\)
  • Incorrect. The denominator should be \(s^2 + 9\text{,}\) not \(s^2 - 9\text{.}\)
  • \(\ds\frac{s}{s^2 + 9}\)
  • Correct! Cosine is even, so \(\cos(-3t)\) = \(\cos(3t)\text{,}\) and its transform is \(\ds\frac{s}{s^2 + 9}\text{.}\)
  • \(\ds\frac{3}{s^2 - 9}\)
  • Incorrect. Both the numerator and denominator are wrong for cosine transforms.
You have attempted of activities on this page.