\begin{equation*}
f(x) = \ln x\cos x
\end{equation*}
Section Product Rule
The next technique for solving DEs we will study relies heavily on you knowing the Product Rule for differentiation inside and out, forward and backward (literally!). These problems are intended to help you review the Product Rule. (Donβt forget about the chain rule, too!) Letβs warm up by practicing using the product rule.
-
Write down the product rule.\begin{equation} \frac{d}{dx}\Big( f(x)\cdot g(x) \Big) = f(x) \cdot g'(x) + g(x) \cdot f'(x)\tag{49} \end{equation}
-
Evaluate the following derivatives.
-
\(\ds \frac{d}{dx}\Big( e^{4x}\cos x \Big) \qquad\)
Solution.
\begin{align*} \frac{d}{dx}\Big( e^{4x}\cos x \Big) \amp = e^{4x} \cdot\frac{d}{dx}\Big(\cos x \Big) + \cos x\cdot \frac{d}{dx}\Big(e^{4x}\Big)\\ \amp = e^{4x} \cdot (-\sin x) + \cos x\cdot e^{4x} \cdot \frac{d}{dx}(4x)\\ \amp = -e^{4x} \sin x + \cos x\cdot e^{4x} \cdot (4)\\ \amp = -e^{4x} \sin x + 4 e^{4x} \cos x\\ \amp = e^{4x} (4\cos x - \sin x) \end{align*} -
\(\ds \frac{d}{dx}\Big( x^5\ln (7x^2) \Big) \qquad\)
Solution.
\begin{align*} \frac{d}{dx}\Big( x^5\ln (7x^2) \Big) \amp = x^5 \cdot\frac{d}{dx}\Big(\ln(7x^2) \Big) + \ln(7x^2)\cdot \frac{d}{dx}\Big( x^5 \Big)\\ \amp = x^5 \cdot \frac{1}{7x^2}\cdot\frac{d}{dx}(7x^2) + \ln(7x^2)\cdot (5x^4)\\ \amp = \frac{14x^6}{7x^2} + 5x^4\ln(7x^2)\\ \amp = 2x^4 + 5x^4\ln(7x^2) \end{align*} -
\(\ds \frac{d}{dx}\Big( x\arctan x \Big) \qquad\)
Solution.
-
\(\ds \frac{d}{dx}\Big( \cos x \cdot y(x) \Big) = \)
Answer.
-
\(\ds \frac{d}{dt}\Big( e^{5t} \cdot z \Big) = \)
Answer.
Now letβs look at the product rule "in the other direction"... Or we can think about this as "un-doing" the product rule.
For example, if we have the expression
\begin{equation*}
e^{(t^3)} \cdot \frac{dy}{dt} + 3t^2e^{(t^3)}\cdot y,
\end{equation*}
then we can see that if we think identify \(e^{(t^3)}\) as
\begin{equation*}
f(t) = e^{(t^3)}
\end{equation*}
then
\begin{equation*}
f'(t) = 3t^2e^{(t^3)}
\end{equation*}
Then we might label the expression as follows:
\begin{equation*}
\ub{e^{(t^3)}}_{f(t)} \cdot \ub{\frac{dy}{dt}}_{g'(t)} + \ub{3t^2e^{(t^3)}}_{f'(t)}\cdot \ub{y}_{g(t)}
\end{equation*}
This now looks like the result of having taken the derivative of a product. That is:
\begin{align*}
\ub{e^{(t^3)}}_{f(t)} \cdot \ub{\frac{dy}{dt}}_{g'(t)} + \ub{3t^2e^{(t^3)}}_{f'(t)}\cdot \ub{y}_{g(t)}
\amp = f(t) \cdot g'(t) + f'(t) \cdot g(t)\\
\amp = \frac{d}{dt}\Big( f(t) \cdot g(t) \Big)\\
\amp = \frac{d}{dt}\Big( e^{(t^3)} \cdot y \Big)
\end{align*}
Now you try some.
Rewrite each of the following as the derivative of a product:
-
\(\ds x^{-4} \frac{dy}{dx} - 4x^{-5}y = \frac{d}{dx}\Big(\qquad ? \qquad\Big)\qquad\)
-
\(\ds e^{-3x} y' - 3e^{-3x}y = \frac{d}{dx}\Big(\qquad ? \qquad\Big)\qquad\)
-
\(\ds \sec(\theta) \frac{dr}{d\theta} + \sec(\theta) \tan(\theta) r = \frac{d}{dx}\Big(\qquad ? \qquad\Big)\qquad\)
Checkpoint 322.
You have attempted of activities on this page.