Skip to main content\(\newcommand\DLGray{\color{Gray}}
\newcommand\DLO{\color{BurntOrange}}
\newcommand\DLRa{\color{WildStrawberry}}
\newcommand\DLGa{\color{Green}}
\newcommand\DLGb{\color{PineGreen}}
\newcommand\DLBa{\color{RoyalBlue}}
\newcommand\DLBb{\color{Cerulean}}
\newcommand\ds{\displaystyle}
\newcommand\ddx{\frac{d}{dx}}
\newcommand\os{\overset}
\newcommand\us{\underset}
\newcommand\ob{\overbrace}
\newcommand\obt{\overbracket}
\newcommand\ub{\underbrace}
\newcommand\ubt{\underbracket}
\newcommand\ul{\underline}
\newcommand\laplacesym{\mathscr{L}}
\newcommand\lap[1]{\laplacesym\left\{#1\right\}}
\newcommand\ilap[1]{\laplacesym^{-1}\left\{#1\right\}}
\newcommand\tikznode[3][]
{\tikz[remember picture,baseline=(#2.base)]
\node[minimum size=0pt,inner sep=0pt,#1](#2){#3};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\newcommand{\sfrac}[2]{{#1}/{#2}}
\)
Worksheet Key Terms & Concepts
β³οΈ Solutions & Initial Conditions.
- Satisfying a DE
A function satisfies a DE if substituting it into the dependent variable results in the equation simplifying to a true statement (e.g.,
\(0 = 0\)).
A function that satisfies the DE.
- General Solution
The common form (template) of all the solutions in the family. It contains constants that can take any value.
- Particular Solution
A single solution obtained by assigning specific values to the constants in the general solution.
- Family of Solutions
The collection of all possible particular solutions.
- Initial Conditions
Known values of the solution or its derivatives at a specific point, used to determine a particular solution from the general solution.
β³οΈ Direct Integration.
- Direct Integration
A method to solve differential equations of the form:
\begin{equation*}
\frac{d}{dx}\left[g(x,y)\right] = f(x),
\end{equation*}
by integrating both sides with respect to the independent variable \(x\text{.}\)