Skip to main content
Logo image

Section Differentiation

Throughout the DEs course, we will be differentiating AND integrating. Let’s review a few common rules used for differentiation.
  • Product Rule: \(\ds\qquad \frac{d}{dx}[f(x) \cdot g(x)] = f(x)\cdot \frac{d}{dx}g(x) + g(x)\cdot \frac{d}{dx}f(x)\)
  • \(\displaystyle \)
  • Quotient Rule: \(\ds\qquad \frac{d}{dx}\left[\ds \frac{f(x)}{g(x)}\right] = \ds \frac{g(x) \cdot \ds \frac{d}{dx}f(x) - f(x) \cdot \ds \frac{d}{dx}g(x)}{[g(x)]^2}\)
  • \(\displaystyle \)
  • Chain Rule: \(\ds\qquad \frac{d}{dx}f\big(g(x)\big) = f'\big(g(x)\big) \cdot g'(x)\)
Consider the following example.

🌌 Example 321. Find the derivative of \(h(x) = (x^5 + 4)\sin(e^x)\).

We have a product of functions, so we will need to use the product rule. We also have a composition of functions because \(e^x\) is inside of an sine function, so we will need to use the chain rule. Here’s how it works.
\begin{align*} h'(x) \amp = \ub{\frac{d}{dx} \Big[\ub{(x^5 + 4)}_{f} \cdot \ub{\sin(e^x)}_{g} \Big]}_{ \knowl{./knowl/xref/product_rule.html}{\text{product rule}}} \\ \amp = (x^5+4)\cdot \knowl{./knowl/xref/chain_rule.html}{\text{\(\ds\ub{\frac{d}{dx}\Big( \sin(e^x) \Big)}_{\text{chain rule}}\)}} + \sin(e^x) \cdot \frac{d}{dx}\Big( x^5 + 4 \Big) \\ \amp = (x^5+4)\cdot\cos(e^x) \cdot \frac{d}{dx}\Big( e^x \Big) + \sin(e^x) \cdot 5x^4 \\ \amp = (x^5+4)\cdot\cos(e^x) \cdot e^x + 5x^4\sin(e^x) \\ \amp = (x^5+4)e^x\cos(e^x) + 5x^4\sin(e^x) \end{align*}
Now you try.
Find the indicated derivatives.
  1. \(\ds \frac{d}{dz}\Big( e^{3z+6} \Big)\)
    Solution
    \begin{align*} \frac{d}{dz}\Big( e^{3z+6} \Big) \amp = e^{3z+6} \cdot \frac{d}{dz}\Big( 3z+6 \Big) \qquad \knowl{./knowl/xref/chain_rule.html}{\text{chain rule}} \\ \amp = e^{3z+6} \cdot (3) \\ \amp = 3e^{3z+6} \end{align*}
    \begin{equation*} 3e^{3z+6} \end{equation*}
  2. \(\ds \frac{d}{dx}\Big( x^2e^{(\sin x)} \Big) \qquad\)
    \begin{align*} \knowl{./knowl/xref/product_rule.html}{\text{\(\ds\frac{d}{dx}\Big( x^2e^{(\sin x)} \Big)\)}} \amp = x^2 \cdot \knowl{./knowl/xref/chain_rule.html}{\text{\(\ds\frac{d}{dx}\Big(e^{(\sin x)} \Big)\)}} + e^{(\sin x)}\cdot \frac{d}{dx}\Big(x^2\Big) \\ \amp = x^2 \cdot e^{(\sin x)}\cdot\frac{d}{dx}\Big(\sin x \Big) + e^{(\sin x)}\cdot 2x \\ \amp = x^2\cdot e^{(\sin x)}\cdot\cos x + 2xe^{(\sin x)} \\ \amp = x^2 e^{(\sin x)}\cos x + 2xe^{(\sin x)} \end{align*}
    \begin{equation*} x^2 e^{(\sin x)}\cos x + 2xe^{(\sin x)} \end{equation*}
  3. \(\ds \frac{d}{dt}\Big( (t+t^2)^{-1} \Big) \qquad\)
    \begin{align*} \frac{d}{dt}\Big( (t+t^2)^{-1} \Big) \amp = (-1)(t+t^2)^{-2} \cdot \frac{d}{dt}\Big( t+t^2 \Big) \qquad \knowl{./knowl/xref/chain_rule.html}{\text{chain rule}} \\ \amp = (-1)(t+t^2)^{-2} \cdot (1 + 2t) \\ \amp = \frac{-(1+2t)}{(t+t^2)^2} \end{align*}
    \begin{equation*} \frac{-(1+2t)}{(t+t^2)^2} \end{equation*}
  4. \(\ds \frac{d}{ds}\Big( \ln(4s+7) \Big) \qquad\)
    \begin{align*} \frac{d}{ds}\Big( \ln(4s+7) \Big) \amp = \frac{1}{4s+7} \cdot \frac{d}{ds}\Big( 4s+7 \Big) \qquad \knowl{./knowl/xref/chain_rule.html}{\text{chain rule}} \\ \amp = \frac{1}{4s+7} \cdot (4) \\ \amp = \frac{4}{4s+7} \end{align*}
    \begin{equation*} \frac{4}{4s+7} \end{equation*}
You have attempted of activities on this page.