This DE is first order and linear, so we can solve it using an integrating factor. (There are other solution techniques, as well.)\\ We begin by putting the DE in the standard form for a first-order linear DE so that we can identif \(\ds P(x) \) .
\begin{align*}
y' \amp = 2x - 3y + 1 \\
y' + 3y \amp = 2x + 1
\end{align*}
We can see tha \(\ds P(x) = 3. \) Then we can find the integrating facto \(\ds z \)
\begin{align*}
z \amp = e^{\mbox{an antiderivative o }} \\
\amp = e^{\mbox{an antiderivative o }} \\
\amp = e^{3x}
\end{align*}
Now we multiply both sides of the DE by the integrating factor.
\begin{align*}
e^{3x}\cdot y' + 3e^{3x}y \amp = (2x+1)e^{3x} \nonumber \\
\underbrace{e^{3x}}_{f}\cdot\underbrace{y'}_{g'} + \underbrace{3e^{3x}}_{f'}\cdot\underbrace{y}_{g} \amp = (2x+1)e^{3x} \label{eq14-1}
\end{align*}
Now we recall the product rule for derivatives: \(\ds \frac{d}{dx}\Big( f \cdot g \Big) = f\cdot g' + f' \cdot g. \) We note that the two terms on the left hand side of equation (\ref{eq14-1}) are the result of taking the derivative of the product. Hence we can undo the product rule as follows: \(\ds\frac{d}{dx}\Big(e^{3x}\cdot y \Big) = (2x+1)e^{3x}.\) We would like to integrate both sides of the equation so we can isolat \(\ds y \) . On the right hand side, we will need to use integration by parts. We choos \(\ds u \) an \(\ds dv \) as follows: \(\ds u = 2x+ \hspace{2cm} \ds du \) by taking the derivative o \(\ds u \) an \(\ds v \) by taking the antiderivative o \(\ds dv \) : \(\ds du = 2dx \hspace{2cm} v = \frac{1}{3}e^{3x}. \) Now we proceed by integrating as follows.
\begin{align*}
\int \frac{d}{dx}\Big(e^{3x}\cdot y \Big)dx \amp = \int (2x+1)e^{3x} dx \\
e^{3x}\cdot y \amp = (2x+1)\cdot\frac{1}{3}e^{3x} - \int \frac{1}{3}e^{3x} \cdot 2dx \\
\amp = \frac{1}{3}(2x+1)e^{3x} - \frac{2}{3}\int e^{3x}dx \\
\amp = \frac{1}{3}(2x+1)e^{3x} - \frac{2}{3}\cdot \frac{1}{3}e^{3x} + C \\
\amp = \frac{2}{3}xe^{3x} + \frac{1}{3}e^{3x} - \frac{2}{9}e^{3x} + C \\
\amp = \frac{2}{3}xe^{3x} + \frac{1}{9}e^{3x} + C \\
y \amp = \frac{2}{3}x + \frac{1}{9} + \frac{C}{e^{3x}} \\
\amp = \frac{2}{3}x + \frac{1}{9} + Ce^{-3x}
\end{align*}
Now we use the initial condition to find the value o \(\ds C \) .
\begin{align*}
y(1) \amp = 5 \\
\frac{2}{3}\cdot 1 + \frac{1}{9} + Ce^{-3\cdot 1} \amp = 5 \\
\frac{7}{9} + Ce^{-3} \amp = 5 \\
Ce^{-3} \amp = \frac{38}{9} \\
C \amp = \frac{38}{9e^{-3}} \\
\amp = \frac{38e^3}{9}
\end{align*}
Hence, the solution is \(\ds y = \frac{2}{3}x + \frac{1}{9} + \frac{38e^3}{9}e^{-3x}. \) We can use this to fin \(\ds y(1.1): \)
\begin{align*}
y(1.1) \amp = \frac{2}{3}\cdot 1.1 + \frac{1}{9} + \frac{38e^3}{9}e^{-3\cdot 1.1} \\
\amp = 3.9723
\end{align*}
Note that the two numerical approximations wer \(\ds y(1.1) \approx 3.8 \) (found using \(\ds h = 0.1 \) ) an \(\ds y(1.1) \approx 3.895 \) (found using \(\ds h = 0.05 \) ). Both are reasonable approximations, but the approximation using the smaller step size is closer to the exact answer.