\begin{gather*}
\small \os{\vphantom{m}}{ y'' + 4y = g(t) }\\
\small y(0) = 0,\ y'(0) = 0 \\
\small \os{\large πΊ πΊ πΊ πΊ πΊ}{\text{Differential Equation}}\\
\\
\small \us{\large π» π» π» π» π»}{\text{Solution}}\\
\small y(t) = \left(\frac14 - \frac18\cos\big(2(t - 1)\big)\right)u_1(t)\\
\small \qquad - \left(\frac14 - \frac18\cos\big(2(t - 2)\big)\right)u_2(t)
\end{gather*}
\begin{gather*}
\small \underrightarrow{\text{1οΈβ£ Forward}}\\
\small \text{Apply}\ \laplacesym\\
\\
\\
\\
\\
\small \text{Apply}\ \laplacesym^{-1}\\
\small \overleftarrow{\text{3οΈβ£ Backward}}
\end{gather*}
\begin{align*}
\amp\small\DLBa s^2Y(s) + 4Y(s) = \frac{e^{-s}}{s} - \frac{e^{-2s}}{s}\\
\amp\small\qquad\qquad {\Big\downarrow}\quad\text{Solve for}\ Y\\
\amp\small\DLBa Y(s) = \frac{1}{s^2 + 4} \left( \frac{e^{-s}}{s} - \frac{e^{-2s}}{s} \right)\\
\amp\small\qquad\qquad {\Big\downarrow}\ \ \text{Prepare for Inverse}\\
\amp\small\DLBa Y(s) = F(s)e^{-s} - F(s)e^{-2s}\\
\amp\small\text{where}\ \DLBa F(s) = \frac14 \left( \frac{1}{s} - \frac{s}{s^2 + 4} \right)
\end{align*}