Completing the square for the denominator of \(Y(s)\) gives:
\begin{equation*}
Y(s) = \frac{s+3}{s^2 + 8s + 19} = \frac{s+3}{(s + 4)^2 + 3}\text{.}
\end{equation*}
The form of the denominator and the
\(s\) in the numerator indicates that we are trying to match
L\(_8\) (
\(a=-4\text{,}\) \(b=\sqrt{3}\)), but we need
\(s+4\) in the numerator. So we add and subtract
\(4\text{,}\) then split the fraction:
\begin{equation*}
Y(s)
= \frac{s + 4 - 4 + 2}{(s + 4)^2 + 3}
= \us{\ds\knowl{./knowl/xref/lt-L8-table.html}{\text{L}_8}\text{βοΈ}}{\ul{\frac{s+4}{(s + 4)^2 + 3}}}
+ \us{\ds\text{almost}\ \knowl{./knowl/xref/lt-L7-table.html}{\text{L}_7}}{\ul{\frac{-2}{(s + 4)^2 + 3}}}\text{.}
\end{equation*}
Since the second term needs a
\(\sqrt{3}\) in the numerator, we multiply it by
\(\sfrac{\sqrt{3}}{\sqrt{3}}\text{:}\)
\begin{equation*}
Y(s)
= \frac{s + 4 - 4 + 2}{(s + 4)^2 + 3}
= \us{\ds\knowl{./knowl/xref/lt-L8-table.html}{\text{L}_8}\text{βοΈ}}{\ul{\frac{s+4}{(s + 4)^2 + 3}}}
+ \frac{-2}{\sqrt{3}}\us{\ds\knowl{./knowl/xref/lt-L7-table.html}{\text{L}_7}\text{βοΈ}}{\ul{\frac{\sqrt{3}}{(s + 4)^2 + 3}}}\text{.}
\end{equation*}
From here, the inverse transform comes from the table:
\begin{equation*}
y(t) = e^{-4t}\cos(\sqrt{3}t) - \frac{2}{\sqrt{3}}e^{-4t}\sin(\sqrt{3}t)\text{.}
\end{equation*}