Factor the denominator as
\begin{equation*}
(s - 1)(s^2 + s + 1)\text{.}
\end{equation*}
The partial fraction decomposition is:
\begin{equation*}
\frac{5s + 3}{(s - 1)(s^2 + s + 1)} = \frac{A}{s - 1} + \frac{Bs + C}{s^2 + s + 1}.
\end{equation*}
Multiply through by \((s - 1)(s^2 + s + 1)\) and solve for \(A\text{,}\) \(B\text{,}\) and \(C\text{.}\)
\begin{equation*}
5s + 3 = A(s^2 + s + 1) + (Bs + C)(s - 1).
\end{equation*}
Expanding and comparing coefficients, we find:
\begin{equation*}
A = 5, \quad B - A = 0, \quad C - B = 3.
\end{equation*}
Therefore, the partial fraction decomposition is:
\begin{equation*}
\frac{5s + 3}{(s - 1)(s^2 + s + 1)} = \frac{5}{s - 1} + \frac{5s - 2}{s^2 + s + 1}.
\end{equation*}