Skip to main content
Logo image

Section 12.4 Complex Fractions

In this section, we will learn how to simplify complex fractions, which have fractions in the numerator and/or denominator of another fraction.
Figure 12.4.1. Alternative Video Lesson

Subsection 12.4.1 Simplifying Complex Fractions

Consider the rational expression
6x46x4+3.
It’s difficult to quickly evaluate this expression, or determine the important information such as its domain. This type of rational expression, which contains a “fraction within a fraction,” is referred to as a complex fraction. Our goal is to simplify such a fraction so that it has a single numerator and a single denominator, neither of which contain any fractions themselves.
A complex fraction may have fractions in its numerator and/or denominator. Here is an example to show how we use division to simplify a complex fraction.
 12 3=12÷3=12÷31=1213=16
What if the expression had something more complicated in the denominator, like 1213+14? We would no longer be able to simply multiply by the reciprocal of the denominator, since we don’t immediately know the reciprocal of that denominator. Instead, we could multiply the “main” numerator and denominator by something that eliminates all of the “internal” denominators. (We’ll use the LCD to determine this). For example, with  12 3, we can multiply by 22:
 12 3= 12 322=16

Remark 12.4.2.

In the last example, it’s important to identify which fraction bar is the “main” fraction bar, and which fractions are “internal.” Comparing the two expressions below, both of which are “one over two over three”, we see that they are not equivalent.
 12 3= 12 322versus 1 23= 1 2333=16=32
For the first of these, the “main” fraction bar is above the 3, but for the second of these, the “main” fraction bar is above the 23.
To attack multiple fractions in a complex fraction, we need to multiply the numerator and denominator by the LCD of all the internal fractions, as we will show in the next example.

Example 12.4.3.

Simplify the complex fraction 1213+14.
Explanation.
The internal denominators are 2, 3, and 4, so the LCD is 12. We will thus multiply the main numerator and denominator by 12 and simplify the result:
1213+14=1213+141212=1212(13+14)12=12121312+1412=64+3=67
Next we will evaluate a function whose formula is a complex fraction and then simplify the result.

Example 12.4.4.

Find each function value for f(x)=x+2x+32x+33x1.
  1. f(4)
  2. f(0)
  3. f(3)
  4. f(11)
Explanation.
We will determine each function value by replacing x with the specified number and then simplify the complex fraction:
  1. f(4)=4+24+324+3341=672733=6727177=627=65
  2. f(0)=0+20+320+3301=232331=2323+333=22+9=211
  3. When evaluating f at 3, we can quickly see that this results in division by zero:
    f(3)=3+23+323+3331=202034
    Thus f(3) is undefined.
  4. f(11)=11+211+3211+33111=8928312=8914+14=890
    Therefore f(11) is undefined.
We have simplified complex fractions involving numbers and now we will apply the same concept to complex fractions with variables.

Example 12.4.5.

Simplify the complex fraction 31y+5y2.
Explanation.
To start, we look at the internal denominators and identify the LCD as y2. We’ll multiply the main numerator and denominator by the LCD, and then simplify. Since we are multiplying by y2y2, it is important to note that y cannot be 0, since 00 is undefined.
31y+5y2=31y+5y2y2y2=3y21yy2+5y2y2=3y2y+5, for y0

Example 12.4.6.

Simplify the complex fraction  5x62x+1 3x+22x+1.
Explanation.
The internal denominators are both 2x+1, so this is the LCD and we will multiply the main numerator and denominator by this expression. Since we are multiplying by 2x+12x+1, what x-value would cause 2x+1 to equal 0? Solving 2x+1=0 leads to x=12. So x cannot be 12, since 00 is undefined.
 5x62x+1 3x+22x+1= 5x62x+1 3x+22x+12x+12x+1=5x63x+2, for x12

Example 12.4.7.

Completely simplify the function defined by f(x)=x+2x+32x+33x1. Then determine the domain of this function.
Explanation.
The LCD of the internal denominators is (x+3)(x1). We will thus multiply the main numerator and denominator by the expression (x+3)(x1) and then simplify the resulting expression.
f(x)=x+2x+32x+33x1=x+2x+32x+33x1(x+3)(x1)(x+3)(x1)=x+2x+3(x+3)(x1)(2x+33x1)(x+3)(x1)=x+2x+3(x+3)(x1)2x+3(x+3)(x1)3x1(x+3)(x1)=(x+2)(x1)2(x1)3(x+3), for x3,x1=(x+2)(x1)2x23x9, for x3,x1=(x+2)(x1)x11, for x3,x1=(x+2)(x1)(x+11), for x3,x1
In the original (unsimplified) function, we could see that x3 and x1. In the simplified function, we need x+110, so we can also see that x11. Therefore the domain of the function f is {xx11,3,1}.

Example 12.4.8.

Simplify the complex fraction 2(4x+3x2)+34x+3x2+4.
Explanation.
The only internal denominator is x2, so we will begin by multiplying the main numerator and denominator by this. Then we’ll simplify the resulting expression.
2(4x+3x2)+34x+3x2+4=2(4x+3x2)+34x+3x2+4x2x2=2(4x+3x2)(x2)+3(x2)(4x+3x2)(x2)+4(x2)=2(4x+3)+3(x2)(4x+3)+4(x2), for x2=8x+6+3x64x+3+4x8, for x2=5x5, for x2=x, for x2

Example 12.4.9.

Simplify the complex fraction 5x+4y3x2y. Recall that with a multivariable expression, this textbook ignores domain restrictions.
Explanation.
We multiply the numerator and denominator by the common denominator of x and y, which is xy:
5x+4y3x2y=5x+4y3x2yxyxy=(5x+4y)xy(3x2y)xy=5xxy+4yxy3xxy2yxy=5y+4x3y2x

Example 12.4.10.

Simplify the complex fraction tt+3+2t31tt29.
Explanation.
First, we check all quadratic polynomials to see if they can be factored and factor them:
tt+3+2t31tt29=tt+3+2t31t(t3)(t+3)
Next, we identify the common denominator of the three fractions, which is (t+3)(t3). We then multiply the main numerator and denominator by that expression:
tt+3+2t31tt29=tt+3+2t31t(t3)(t+3)(t+3)(t3)(t+3)(t3)=tt+3(t+3)(t3)+2t3(t+3)(t3)1(t+3)(t3)t(t3)(t+3)(t+3)(t3)=t(t3)+2(t+3)(t+3)(t3)t for t3,t3=t23t+2t+6t29t for t3,t3=t2t+6t2t9 for t3,t3
Note that since both the numerator and denominator are prime trinomials, this expression can neither factor nor simplify any further.

Reading Questions 12.4.2 Reading Questions

1.

What does it mean for a fraction to be a “complex” fraction?

2.

When simplifying a complex fraction, why is it necessary to keep track of domain restrictions?

Exercises 12.4.3 Exercises

Review and Warmup.

1.
Calculate the following. Use an improper fraction in your answer.
  1. 25459=
  2. xrty=
2.
Calculate the following. Use an improper fraction in your answer.
  1. 5354=
  2. yxtr=
3.
Calculate the following. Use an improper fraction in your answer.
  1. 549=
  2. 549=
4.
Calculate the following. Use an improper fraction in your answer.
  1. 345=
  2. 345=
5.
Calculate the following. Use an improper fraction in your answer.
25+2334=
6.
Calculate the following. Use an improper fraction in your answer.
351643=
7.
Calculate the following. Use an improper fraction in your answer.
643+23=
8.
Calculate the following. Use an improper fraction in your answer.
12523=

Simplifying Complex Fractions with One Variable.

9.
Simplify this expression, and if applicable, write the restricted domain.
9x2xx+7x =
10.
Simplify this expression, and if applicable, write the restricted domain.
6a+7aa2a =
11.
Simplify this expression, and if applicable, write the restricted domain.
c(c2)210cc24=
12.
Simplify this expression, and if applicable, write the restricted domain.
u(u8)25uu264=
13.
Simplify this expression, and if applicable, write the restricted domain.
5+1ss+9=
14.
Simplify this expression, and if applicable, write the restricted domain.
2+1pp+4=
15.
Simplify this expression, and if applicable, write the restricted domain.
41t+5t1=
16.
Simplify this expression, and if applicable, write the restricted domain.
21t2t5=
17.
Simplify this expression, and if applicable, write the restricted domain.
2+1y51y519=
18.
Simplify this expression, and if applicable, write the restricted domain.
8+1y101y1016=
19.
Simplify this expression, and if applicable, write the restricted domain.
1c22c+221c+2=
20.
Simplify this expression, and if applicable, write the restricted domain.
1c5+3c+511c+5=
21.
Simplify this expression, and if applicable, write the restricted domain.
1s4+2s441s+4=
22.
Simplify this expression, and if applicable, write the restricted domain.
1s2+4s231s+2=
23.
Simplify this expression, and if applicable, write the restricted domain.
10q1101q1+1q2=
24.
Simplify this expression, and if applicable, write the restricted domain.
7q151q1+1q10=
25.
Simplify this expression, and if applicable, write the restricted domain.
6tt21+55t+14t1=
26.
Simplify this expression, and if applicable, write the restricted domain.
3xx23623x+64x6=
27.
Simplify this expression, and if applicable, write the restricted domain.
zz2361z2361z+36=
28.
Simplify this expression, and if applicable, write the restricted domain.
cc291c291c+9=

Simplifying Complex Fractions with More Than One Variable.

29.
Simplify this expression.
ab6a5b2=
30.
Simplify this expression.
st5s4t2=
31.
Simplify this expression.
st24us4tu=
32.
Simplify this expression.
pq29rp8qr=
33.
Simplify this expression.
  1. tyx=
  2. tyx=
34.
Simplify this expression.
  1. txr=
  2. txr=
35.
Simplify this expression.
3t93x4=
36.
Simplify this expression.
3x12+3y4=
37.
Simplify this expression.
3x+12t15x+3t=
38.
Simplify this expression.
2y12r10y4r=
You have attempted 1 of 2 activities on this page.