The LCD of the internal denominators is \((x+3)(x-1)\text{.}\) We will thus multiply the main numerator and denominator by the expression \((x+3)(x-1)\) and then simplify the resulting expression.
\begin{align*}
f(x)\amp=\frac{\frac{x+2}{x+3}}{\frac{2}{x+3}-\frac{3}{x-1}}\\
\amp=\frac{\frac{x+2}{x+3}}{\frac{2}{x+3}-\frac{3}{x-1}}\multiplyright{\frac{(x+3)(x-1)}{(x+3)(x-1)}}\\
\amp=\frac{\frac{x+2}{x+3}\multiplyright{(x+3)(x-1)}}{\left(\frac{2}{x+3}-\frac{3}{x-1}\right)\multiplyright{(x+3)(x-1)}}\\
\amp=\frac{\frac{x+2}{\cancelhighlight{x+3}}\cancelhighlight{(x+3)}(x-1)}{\frac{2}{\secondcancelhighlight{x+3}}\secondcancelhighlight{(x+3)}(x-1)-\frac{3}{\thirdcancelhighlight{x-1}}(x+3)\thirdcancelhighlight{(x-1)}}\\
\amp=\frac{(x+2)(x-1)}{2(x-1)-3(x+3)}, \text{ for }x\neq -3, x\neq 1\\
\amp=\frac{(x+2)(x-1)}{2x-2-3x-9}, \text{ for }x\neq -3, x\neq 1\\
\amp=\frac{(x+2)(x-1)}{-x-11}, \text{ for }x\neq -3, x\neq 1\\
\amp=\frac{(x+2)(x-1)}{-(x+11)}, \text{ for }x\neq -3, x\neq 1
\end{align*}
In the original (unsimplified) function, we could see that \(x\neq -3\) and \(x\neq 1\text{.}\) In the simplified function, we need \(x+11\neq 0\text{,}\) so we can also see that \(x\neq -11\text{.}\) Therefore the domain of the function \(f\) is \(\{x\mid x\neq -11, -3, 1\}\text{.}\)