Example 10.8.1. Finding the Greatest Common Factor.
What is the greatest common factor between \(12x^3y\) and \(42x^2y^2\text{?}\)
Explanation.
Break down each of these into its factors:
\begin{align*}
12x^3y \amp =(2\cdot 2)\cdot 3\cdot (x\cdot x\cdot x) \cdot y \amp 42x^2y^2 \amp =2\cdot 3\cdot 7\cdot (x\cdot x)\cdot (y \cdot y)\\
\end{align*}
Identify the common factors:
\begin{align*}
12x^3y \amp =\attention{2}\cdot 2\cdot \attention{3}\cdot \attention{x}\cdot \attention{x}\cdot x \cdot \attention{y} \amp 42x^2y^2 \amp =\attention{2}\cdot \attention{3}\cdot 7\cdot \attention{x}\cdot \attention{x}\cdot \attention{y} \cdot y
\end{align*}
With \(2\text{,}\) \(3\text{,}\) two \(x\)’s and a \(y\) in common, the greatest common factor is \(6x^2y\text{.}\)