Skip to main content
Logo image

Section 6.5 Radical Expressions and Equations Chapter Review

Subsection 6.5.1 Square and \(n\)th Root Properties

In Section 1 we defined the square root \(\sqrt{x}\) and \(n\)th root \(\sqrt[n]{x}\) radicals. When \(x\) is positive, the expression \(\sqrt[n]{x}\) means a positive number \(r\text{,}\) where \(\overbrace{r\cdot r\cdot\cdots\cdot r}^{n\text{ times}}=x\text{.}\) The square root \(\sqrt{x}\) is just the case where \(n=2\text{.}\)
When \(x\) is negative, \(\sqrt[n]{x}\) might not be defined. It depends on whether or not \(n\) is an even number. When \(x\) is negative and \(n\) is odd, \(\sqrt[n]{x}\) is a negative number where \(\overbrace{r\cdot r\cdot\cdots\cdot r}^{n\text{ times}}=x\text{.}\)
There are two helpful properties for simplifying radicals.
List 6.5.1. Properties of Radicals for Multiplication and Division
If \(a\) and \(b\) are positive real numbers, and \(m\) is a positive [cross-reference to target(s) "item-integer-definition" missing or not unique], then we have the following properties:
Root of a Product Property
\(\displaystyle \sqrt[m]{a\cdot b} = \sqrt[m]{a} \cdot \sqrt[m]{b}\)
Root of a Quotient Property
\(\sqrt[m]{\frac{a}{b}} = \frac{\sqrt[m]{a}}{\sqrt[m]{b}}\) as long as \(b \neq 0\)

Checkpoint 6.5.2.

  1. Simplify \(\sqrt{72}\text{.}\)
  2. Simplify \(\sqrt[3]{72}\text{.}\)
  3. Simplify \(\sqrt{\frac{72}{25}}\text{.}\)
Explanation.
  1.  
    \begin{equation*} \begin{aligned} \sqrt{72}\amp=\sqrt{4\cdot18}\\ \amp=\sqrt{4}\cdot\sqrt{18}\\ \amp=2\sqrt{18}\\ \amp=2\sqrt{9\cdot2}\\ \amp=2\sqrt{9}\cdot\sqrt{2}\\ \amp=2\cdot3\sqrt{2}\\ \amp=6\sqrt{2} \end{aligned} \end{equation*}
  2.  
    \begin{equation*} \begin{aligned} \sqrt[3]{72}\amp=\sqrt[3]{8\cdot9}\\ \amp=\sqrt[3]{8}\cdot\sqrt[3]{9}\\ \amp=2\sqrt[3]{9} \end{aligned} \end{equation*}
  3.  
    \begin{equation*} \begin{aligned} \sqrt{\frac{72}{25}}\amp=\frac{\sqrt{72}}{\sqrt{25}}\\ \amp=\frac{6\sqrt{2}}{5} \end{aligned} \end{equation*}

Subsection 6.5.2 Rationalizing the Denominator

In Section 2 we covered how to rationalize the denominator when it contains a single square root or a binomial with a square root term.

Example 6.5.3.

Rationalize the denominator of the expressions.
  1. \(\displaystyle \frac{12}{\sqrt{3}}\)
  2. \(\displaystyle \frac{\sqrt{5}}{\sqrt{75}}\)
Explanation.
  1. \begin{align*} \frac{12}{\sqrt{3}}\amp=\frac{12}{\sqrt{3}}\multiplyright{\frac{\sqrt{3}}{\sqrt{3}}}\\ \amp=\frac{12\sqrt{3}}{3}\\ \amp=4\sqrt{3} \end{align*}
  2. First we will simplify \(\sqrt{75}\text{.}\)
    \begin{align*} \frac{\sqrt{5}}{\sqrt{75}}\amp=\frac{\sqrt{5}}{\sqrt{25\cdot 3}}\\ \amp=\frac{\sqrt{5}}{\sqrt{25}\cdot\sqrt{3}}\\ \amp=\frac{\sqrt{5}}{5\sqrt{3}}\\ \end{align*}
    Now we can rationalize the denominator by multiplying the numerator and denominator by \(\sqrt{3}\text{.}\)
    \begin{align*} \amp=\frac{\sqrt{5}}{5\sqrt{3}}\multiplyright{\frac{\sqrt{3}}{\sqrt{3}}}\\ \amp=\frac{\sqrt{15}}{5\cdot 3}\\ \amp=\frac{\sqrt{15}}{15} \end{align*}

Example 6.5.4. Rationalize Denominator Using the Difference of Squares Formula.

Rationalize the denominator in \(\frac{\sqrt{6}-\sqrt{5}}{\sqrt{3}+\sqrt{2}}\text{.}\)
Explanation.
To remove radicals in \(\sqrt{3}+\sqrt{2}\) with the difference of squares formula, we multiply it with \(\sqrt{3}-\sqrt{2}\text{.}\)
\begin{align*} \frac{\sqrt{6}-\sqrt{5}}{\sqrt{3}+\sqrt{2}}\amp=\frac{\sqrt{6}-\sqrt{5}}{\sqrt{3}+\sqrt{2}}\multiplyright{\frac{\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)}}\\ \amp=\frac{\sqrt{6}\multiplyright{\sqrt{3}}-\sqrt{6}\multiplyright{\sqrt{2}}-\sqrt{5}\multiplyright{\sqrt{3}}-\sqrt{5}\multiplyright{-\sqrt{2}}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}\\ \amp=\frac{\sqrt{18}-\sqrt{12}-\sqrt{15}+\sqrt{10}}{3-2}\\ \amp=\frac{3\sqrt{2}-2\sqrt{3}-\sqrt{15}+\sqrt{10}}{1}\\ \amp=3\sqrt{2}-2\sqrt{3}-\sqrt{15}+\sqrt{10} \end{align*}

Subsection 6.5.3 Radical Expressions and Rational Exponents

Example 6.5.5. Radical Expressions and Rational Exponents.

Simplify the expressions using Fact 6.3.2 or Fact 6.3.9.
  1. \(\displaystyle 100^{\sfrac{1}{2}}\)
  2. \(\displaystyle (-64)^{-\sfrac{1}{3}}\)
  3. \(\displaystyle -81^{\sfrac{3}{4}}\)
  4. \(\displaystyle \left(-\frac{1}{27}\right)^{\sfrac{2}{3}}\)
Explanation.
  1. \(\displaystyle \begin{aligned}[t] 100^{\sfrac{1}{2}}\amp=\left(\sqrt{100}\right)\\ \amp=10 \end{aligned}\)
  2. \(\displaystyle \begin{aligned}[t] (-64)^{-\sfrac{1}{3}}\amp=\frac{1}{(-64)^{\sfrac{1}{3}}}\\ \amp=\frac{1}{\left(\sqrt[3]{(-64)}\right)}\\ \amp=\frac{1}{-4} \end{aligned}\)
  3. \(\displaystyle \begin{aligned}[t] -81^{\sfrac{3}{4}}\amp=-\left(\sqrt[4]{81}\right)^3\\ \amp=-3^3\\ \amp=-27 \end{aligned}\)
  4. In this problem the negative can be associated with either the numerator or the denominator, but not both. We choose the numerator.
    \begin{align*} \left(-\frac{1}{27}\right)^{\sfrac{2}{3}}\amp=\left(\sqrt[3]{-\frac{1}{27}}\right)^2\\ \amp=\left(\frac{\sqrt[3]{-1}}{\sqrt[3]{27}}\right)^2\\ \amp=\left(\frac{-1}{3}\right)^2\\ \amp=\frac{(-1)^2}{(3)^2}\\ \amp=\frac{1}{9} \end{align*}

Example 6.5.6. More Expressions with Rational Exponents.

Use exponent properties in List 6.3.14 to simplify the expressions, and write all final versions using radicals.
  1. \(\displaystyle 7z^{\sfrac{5}{9}}\)
  2. \(\displaystyle \frac{5}{4}x^{-\sfrac{2}{3}}\)
  3. \(\displaystyle \left(-9q^5\right)^{\sfrac{4}{5}}\)
  4. \(\displaystyle \sqrt{y^5}\cdot\sqrt[4]{y^2}\)
  5. \(\displaystyle \frac{\sqrt{t^3}}{\sqrt[3]{t^2}}\)
  6. \(\displaystyle \sqrt{\sqrt[3]{x}}\)
  7. \(\displaystyle 5\left(4+a^{\sfrac{1}{2}}\right)^2\)
  8. \(\displaystyle -6\left(2p^{-\sfrac{5}{2}}\right)^{\sfrac{3}{5}}\)
Explanation.
  1. \(\displaystyle \begin{aligned}[t] 7z^{\sfrac{5}{9}}\amp=7\sqrt[9]{z^5} \end{aligned}\)
  2. \(\displaystyle \begin{aligned}[t] \frac{5}{4}x^{-\sfrac{2}{3}}\amp=\frac{5}{4}\cdot\frac{1}{x^{\sfrac{2}{3}}}\\ \amp=\frac{5}{4}\cdot\frac{1}{\sqrt[3]{x^2}}\\ \amp=\frac{5}{4\sqrt[3]{x^2}} \end{aligned}\)
  3. \(\displaystyle \begin{aligned}[t] \left(-9q^5\right)^{\sfrac{4}{5}}\amp=\left(-9\right)^{\sfrac{4}{5}}\cdot\left(q^5\right)^{\sfrac{4}{5}}\\ \amp=\left(-9\right)^{\sfrac{4}{5}}\cdot q^{5\cdot\sfrac{4}{5}}\\ \amp=\left(\sqrt[5]{-9}\right)^4\cdot q^{4}\\ \amp=\left(q\sqrt[5]{-9}\right)^4 \end{aligned}\)
  4. \(\displaystyle \begin{aligned}[t] \sqrt{y^5}\cdot\sqrt[4]{y^2}\amp=y^{\sfrac{5}{2}}\cdot y^{\sfrac{2}{4}}\\ \amp=y^{\sfrac{5}{2}+\sfrac{2}{4}}\\ \amp=y^{\sfrac{10}{4}+\sfrac{2}{4}}\\ \amp=y^{\sfrac{12}{4}}\\ \amp=y^3 \end{aligned}\)
  5. \(\displaystyle \begin{aligned}[t] \frac{\sqrt{t^3}}{\sqrt[3]{t^2}}\amp=\frac{t^{\sfrac{3}{2}}}{t^{\sfrac{2}{3}}}\\ \amp=t^{\sfrac{3}{2}-\sfrac{2}{3}}\\ \amp=t^{\sfrac{9}{6}-\sfrac{4}{6}}\\ \amp=t^{\sfrac{5}{6}}\\ \amp=\sqrt[6]{t^5} \end{aligned}\)
  6. \(\displaystyle \begin{aligned}[t] \sqrt{\sqrt[3]{x}}\amp=\sqrt{x^{\sfrac{1}{3}}}\\ \amp=\left(x^{\sfrac{1}{3}}\right)^{\sfrac{1}{2}}\\ \amp=x^{\sfrac{1}{3}\cdot\sfrac{1}{2}}\\ \amp=x^{\sfrac{1}{6}}\\ \amp=\sqrt[6]{x} \end{aligned}\)
  7. \(\displaystyle \begin{aligned}[t] 5\left(4+a^{\sfrac{1}{2}}\right)^2\amp=5\left(4+a^{\sfrac{1}{2}}\right)\left(4+a^{\sfrac{1}{2}}\right)\\ \amp=5\left(4^2+2\cdot4\cdot a^{\sfrac{1}{2}}+\left(a^{\sfrac{1}{2}}\right)^2\right)\\ \amp=5\left(16+8a^{\sfrac{1}{2}}+a^{\sfrac{1}{2}\cdot 2}\right)\\ \amp=5\left(16+8a^{\sfrac{1}{2}}+a\right)\\ \amp=5\left(16+8\sqrt{a}+a\right)\\ \amp=80+40\sqrt{a}+5a \end{aligned}\)
  8. \(\displaystyle \begin{aligned}[t] -6\left(2p^{-\sfrac{5}{2}}\right)^{\sfrac{3}{5}}\amp=-6\cdot2^{\sfrac{3}{5}}\cdot p^{-\sfrac{5}{2}\cdot\sfrac{3}{5}}\\ \amp=-6\cdot2^{\sfrac{3}{5}}\cdot p^{-\sfrac{3}{2}}\\ \amp=-\frac{6\cdot 2^{\sfrac{3}{5}}}{p^{\sfrac{3}{2}}}\\ \amp=-\frac{6\sqrt[5]{2^3}}{\sqrt{p^3}}\\ \amp=-\frac{6\sqrt[5]{8}}{\sqrt{p^3}} \end{aligned}\)

Subsection 6.5.4 Solving Radical Equations

In Section 4 we covered solving equations that contain a radical. We learned about extraneous solutions and the need to check our solutions.

Example 6.5.7. Solving Radical Equations that Require Squaring Twice.

Solve the equation \(\sqrt{t+9}=-1-\sqrt{t}\) for \(t\text{.}\)
Explanation.
We cannot isolate two radicals, so we will simply square both sides, and later try to isolate the remaining radical.
\begin{align*} \sqrt{t+9}\amp=-1-\sqrt{t}\\ \left(\sqrt{t+9}\right)^{\highlight{2}}\amp=\left(-1-\sqrt{t}\right)^{\highlight{2}}\\ t+9\amp=1+2\sqrt{t}+t \amp\text{ after expanding the binomial squared}\\ 9\amp=1+2\sqrt{t}\\ 8\amp=2\sqrt{t}\\ 4\amp=\sqrt{t}\\ (4)^{\highlight{2}}\amp=\left(\sqrt{t}\right)^{\highlight{2}}\\ 16\amp=t \end{align*}
Because we squared both sides of an equation, we must check the solution by substituting \(\substitute{16}\) into \(\sqrt{t+9}=-1-\sqrt{t}\text{,}\) and we have:
\begin{align*} \sqrt{t+9}\amp=-1-\sqrt{t}\\ \sqrt{\substitute{16}+9}\amp\wonder{=}-1-\sqrt{16}\\ \sqrt{25}\amp\wonder{=}-1-4\\ 5\amp\reject{=}-5 \end{align*}
Our solution did not check so there is no solution to this equation. The solution set is the empty set, which can be denoted \(\{\text{ }\}\) or \(\emptyset\text{.}\)

Exercises 6.5.5 Exercises

Square Root and \(n\)th Root.

1.
Evaluate the following.
\(\displaystyle{\sqrt{{{\frac{16}{49}}}}={}}\).
2.
Evaluate the following.
\(\displaystyle{\sqrt{{{\frac{25}{121}}}}={}}\).
3.
Evaluate the following.
\(-\sqrt{64}={}\).
4.
Evaluate the following.
\(-\sqrt{81}={}\).

Exercise Group.

5.
Simplify the radical expression or state that it is not a real number.
\(\displaystyle{ \frac{{\sqrt{125}}}{{\sqrt{5}}} =}\)
6.
Simplify the radical expression or state that it is not a real number.
\(\displaystyle{ \frac{{\sqrt{144}}}{{\sqrt{4}}} =}\)
7.
Simplify the radical expression or state that it is not a real number.
\(\displaystyle{ {\sqrt{8}} = }\)
8.
Simplify the radical expression or state that it is not a real number.
\(\displaystyle{ {\sqrt{98}} = }\)

Exercise Group.

9.
Simplify the expression.
\(3\sqrt{7} \cdot 5\sqrt{{25}} =\)
10.
Simplify the expression.
\(4\sqrt{13} \cdot 2\sqrt{{121}} =\)
11.
Simplify the expression.
\(\displaystyle{ \sqrt{\frac{5}{6}} \cdot \sqrt{\frac{1}{6}} =}\)
12.
Simplify the expression.
\(\displaystyle{ \sqrt{\frac{2}{7}} \cdot \sqrt{\frac{5}{7}} =}\)

Exercise Group.

13.
Simplify the expression.
\(\displaystyle{{17\sqrt{2}} - {18\sqrt{2}} =}\)
14.
Simplify the expression.
\(\displaystyle{{18\sqrt{11}} - {19\sqrt{11}} =}\)
15.
Simplify the expression.
\(\displaystyle{{\sqrt{63}} + {\sqrt{252}} =}\)
16.
Simplify the expression.
\(\displaystyle{{\sqrt{252}} + {\sqrt{63}} =}\)

Exercise Group.

17.
\({\sqrt[3]{64}}\text{.}\)
18.
\({\sqrt[3]{27}}\text{.}\)
19.
\({\sqrt[5]{-32}}\text{.}\)
20.
\({\sqrt[3]{-125}}\text{.}\)
21.
\({\sqrt[4]{-16}}\text{.}\)
22.
\({\sqrt[4]{-81}}\text{.}\)
23.
\({\sqrt[6]{128}}\text{.}\)
24.
\({\sqrt[6]{128}}\text{.}\)
25.
\({\sqrt[5]{\frac{7}{32}}}\text{.}\)
26.
\({\sqrt[3]{\frac{7}{27}}}\text{.}\)
27.
\({\sqrt[3]{\frac{135}{64}}}\text{.}\)
28.
\({\sqrt[3]{\frac{135}{64}}}\text{.}\)

Rationalizing the Denominator.

29.
Rationalize the denominator and simplify the expression.
\(\displaystyle{ \frac{4}{{\sqrt{216}}} = }\)
30.
Rationalize the denominator and simplify the expression.
\(\displaystyle{ \frac{2}{{\sqrt{80}}} = }\)
31.
Rationalize the denominator and simplify the expression.
\(\displaystyle{ \sqrt{\frac{7}{150}} = }\)
32.
Rationalize the denominator and simplify the expression.
\(\displaystyle{ \sqrt{\frac{2}{125}} = }\)
33.
Rationalize the denominator and simplify the expression.
\(\displaystyle{\dfrac{9}{\sqrt{2}+5}=}\)
34.
Rationalize the denominator and simplify the expression.
\(\displaystyle{\dfrac{9}{\sqrt{17}+8}=}\)
35.
Rationalize the denominator and simplify the expression.
\(\displaystyle{\dfrac{\sqrt{3}-6}{\sqrt{7}+8}=}\)
36.
Rationalize the denominator and simplify the expression.
\(\displaystyle{\dfrac{\sqrt{2}-7}{\sqrt{13}+5}=}\)

Radical Expressions and Rational Exponents.

37.
Without using a calculator, evaluate the expression.
\(\displaystyle{ 128^{-\frac{4}{7}} = }\)
38.
Without using a calculator, evaluate the expression.
\(\displaystyle{ 9^{-\frac{1}{2}} = }\)
39.
Without using a calculator, evaluate the expression.
\(\displaystyle{ \left(\frac{1}{81}\right)^{-\frac{3}{4}} = }\)
40.
Without using a calculator, evaluate the expression.
\(\displaystyle{ \left(\frac{1}{9}\right)^{-\frac{3}{2}} = }\)
41.
Without using a calculator, evaluate the expression.
\(\displaystyle{ \sqrt[5]{32^{2}}= }\)
42.
Without using a calculator, evaluate the expression.
\(\displaystyle{ \sqrt[5]{32^{4}}= }\)
43.
Without using a calculator, evaluate the expression.
\(\displaystyle{ \sqrt[5]{1024}= }\)
44.
Without using a calculator, evaluate the expression.
\(\displaystyle{ \sqrt[3]{64}= }\)

Exercise Group.

45.
Use rational exponents to write the expression.
\(\displaystyle{\sqrt[9]{z}}\)=
46.
Use rational exponents to write the expression.
\(\displaystyle{\sqrt[6]{t}}\)=
47.
Use rational exponents to write the expression.
\(\displaystyle{\sqrt[3]{3 r + 3}=}\)
48.
Use rational exponents to write the expression.
\(\displaystyle{\sqrt{9 m + 8}=}\)

Exercise Group.

49.
Convert the expression to radical notation.
\(\displaystyle{{n^{\frac{4}{5}}}}\) =
50.
Convert the expression to radical notation.
\(\displaystyle{{a^{\frac{2}{3}}}}\) =
51.
Convert the expression to radical notation.
\(\displaystyle{{b^{\frac{8}{9}}}}\) =
52.
Convert the expression to radical notation.
\(\displaystyle{{r^{\frac{2}{3}}}}\) =
53.
Convert the expression to radical notation.
\(\displaystyle{{16^{\frac{1}{3}}x^{\frac{2}{3}}}}\) =
54.
Convert the expression to radical notation.
\(\displaystyle{{5^{\frac{1}{6}}z^{\frac{5}{6}}}}\) =

Exercise Group.

55.
Simplify the expression, answering with rational exponents and not radicals.
\(\displaystyle{\sqrt[7]{t}\,\sqrt[7]{t}=}\)
56.
Simplify the expression, answering with rational exponents and not radicals.
\(\displaystyle{\sqrt[3]{r}\,\sqrt[3]{r}=}\)
57.
Simplify the expression, answering with rational exponents and not radicals.
\(\displaystyle{\sqrt[3]{27 m^{4}}=}\)
58.
Simplify the expression, answering with rational exponents and not radicals.
\(\displaystyle{\sqrt[5]{32 n^{2}}=}\)
59.
Simplify the expression, answering with rational exponents and not radicals.
\(\displaystyle{\frac{\sqrt[3]{125 a}}{\sqrt[6]{a^{5}}}=}\)
60.
Simplify the expression, answering with rational exponents and not radicals.
\(\displaystyle{\frac{\sqrt{64 b}}{\sqrt[6]{b^{5}}}=}\)
61.
Simplify the expression, answering with rational exponents and not radicals.
\(\displaystyle{\sqrt{c} \cdot \sqrt[6]{c^{5}}=}\)
62.
Simplify the expression, answering with rational exponents and not radicals.
\(\displaystyle{\sqrt{x} \cdot \sqrt[10]{x^{3}}=}\)

Solving Radical Equations.

63.
A pendulum has length \(L\text{,}\) measured in feet. The time period \(T\) that it takes to swing back and forth one time is \({4\ {\rm s}}\text{.}\) The following formula from physics relates \(T\) to \(L\text{.}\)
\begin{equation*} {T} = {2\pi \sqrt{\frac{L}{32}}} \end{equation*}
Use this formula to find the length of the pendulum.
64.
A pendulum has length \(L\text{,}\) measured in feet. The time period \(T\) that it takes to swing back and forth one time is \({4\ {\rm s}}\text{.}\) The following formula from physics relates \(T\) to \(L\text{.}\)
\begin{equation*} {T} = {2\pi \sqrt{\frac{L}{32}}} \end{equation*}
Use this formula to find the length of the pendulum.
You have attempted of activities on this page.