Theorem ELIS. Extending Linearly Independent Sets.
Suppose is a vector space and is a linearly independent set of vectors from Suppose is a vector such that Then the set is linearly independent.
xxxxxxxxxx
A = matrix(QQ, [
[ 1, -2, 3, 2, 0, 2, 2, -1, 3, 8, 0, 7],
[-1, 2, -2, -1, 3, -3, 5, -2, -6, -7, 6, -2],
[ 0, 0, 1, 1, 0, 0, 1, -3, -2, 0, 3, 8],
[-1, -1, 0, -1, -1, 0, -6, -2, -5, -6, 5, 1],
[ 1, -3, 2, 1, -4, 4, -6, 2, 7, 7, -5, 2],
[-2, 2, -2, -2, 3, -3, 6, -1, -8, -8, 7, -7],
[ 0, -3, 2, 0, -3, 3, -7, 1, 2, 3, -1, 0],
[ 0, -1, 2, 1, 2, 0, 4, -3, -3, 2, 6, 6],
[-1, 1, 0, -1, 2, -1, 6, -2, -6, -3, 8, 0],
[ 0, -4, 4, 0, -2, 4, -4, -2, -2, 4, 8, 6]
])
m = A.nrows()
n = A.ncols()
r = A.rank()
m, n, r
xxxxxxxxxx
A.transpose().rank() == r
xxxxxxxxxx
A.right_kernel().dimension() == n - r
xxxxxxxxxx
A.column_space().dimension() == r
xxxxxxxxxx
A.row_space().dimension() == r
xxxxxxxxxx
A.left_kernel().dimension() == m - r