Archetype
Archetype Archetype
Dark Mode Archetype Archetype Archetype Scratch ActiveCode Profile
\(\newcommand{\orderof}[1]{\sim #1}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\reals}{\mathbb{R}}
\newcommand{\real}[1]{\mathbb{R}^{#1}}
\newcommand{\complexes}{\mathbb{C}}
\newcommand{\complex}[1]{\mathbb{C}^{#1}}
\newcommand{\conjugate}[1]{\overline{#1}}
\newcommand{\modulus}[1]{\left\lvert#1\right\rvert}
\newcommand{\zerovector}{\vect{0}}
\newcommand{\zeromatrix}{\mathcal{O}}
\newcommand{\innerproduct}[2]{\left\langle#1,\,#2\right\rangle}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\dimension}[1]{\dim\left(#1\right)}
\newcommand{\nullity}[1]{n\left(#1\right)}
\newcommand{\rank}[1]{r\left(#1\right)}
\newcommand{\ds}{\oplus}
\newcommand{\detname}[1]{\det\left(#1\right)}
\newcommand{\detbars}[1]{\left\lvert#1\right\rvert}
\newcommand{\trace}[1]{t\left(#1\right)}
\newcommand{\sr}[1]{#1^{1/2}}
\newcommand{\spn}[1]{\left\langle#1\right\rangle}
\newcommand{\nsp}[1]{\mathcal{N}\!\left(#1\right)}
\newcommand{\csp}[1]{\mathcal{C}\!\left(#1\right)}
\newcommand{\rsp}[1]{\mathcal{R}\!\left(#1\right)}
\newcommand{\lns}[1]{\mathcal{L}\!\left(#1\right)}
\newcommand{\per}[1]{#1^\perp}
\newcommand{\augmented}[2]{\left\lbrack\left.#1\,\right\rvert\,#2\right\rbrack}
\newcommand{\linearsystem}[2]{\mathcal{LS}\!\left(#1,\,#2\right)}
\newcommand{\homosystem}[1]{\linearsystem{#1}{\zerovector}}
\newcommand{\rowopswap}[2]{R_{#1}\leftrightarrow R_{#2}}
\newcommand{\rowopmult}[2]{#1R_{#2}}
\newcommand{\rowopadd}[3]{#1R_{#2}+R_{#3}}
\newcommand{\leading}[1]{\boxed{#1}}
\newcommand{\rref}{\xrightarrow{\text{RREF}}}
\newcommand{\elemswap}[2]{E_{#1,#2}}
\newcommand{\elemmult}[2]{E_{#2}\left(#1\right)}
\newcommand{\elemadd}[3]{E_{#2,#3}\left(#1\right)}
\newcommand{\scalarlist}[2]{{#1}_{1},\,{#1}_{2},\,{#1}_{3},\,\ldots,\,{#1}_{#2}}
\newcommand{\vect}[1]{\mathbf{#1}}
\newcommand{\colvector}[1]{\begin{bmatrix}#1\end{bmatrix}}
\newcommand{\vectorcomponents}[2]{\colvector{#1_{1}\\#1_{2}\\#1_{3}\\\vdots\\#1_{#2}}}
\newcommand{\vectorlist}[2]{\vect{#1}_{1},\,\vect{#1}_{2},\,\vect{#1}_{3},\,\ldots,\,\vect{#1}_{#2}}
\newcommand{\vectorentry}[2]{\left\lbrack#1\right\rbrack_{#2}}
\newcommand{\matrixentry}[2]{\left\lbrack#1\right\rbrack_{#2}}
\newcommand{\lincombo}[3]{#1_{1}\vect{#2}_{1}+#1_{2}\vect{#2}_{2}+#1_{3}\vect{#2}_{3}+\cdots +#1_{#3}\vect{#2}_{#3}}
\newcommand{\matrixcolumns}[2]{\left\lbrack\vect{#1}_{1}|\vect{#1}_{2}|\vect{#1}_{3}|\ldots|\vect{#1}_{#2}\right\rbrack}
\newcommand{\transpose}[1]{#1^{t}}
\newcommand{\inverse}[1]{#1^{-1}}
\newcommand{\submatrix}[3]{#1\left(#2|#3\right)}
\newcommand{\adj}[1]{\transpose{\left(\conjugate{#1}\right)}}
\newcommand{\adjoint}[1]{#1^\ast}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\setparts}[2]{\left\lbrace#1\,\middle|\,#2\right\rbrace}
\newcommand{\card}[1]{\left\lvert#1\right\rvert}
\newcommand{\setcomplement}[1]{\overline{#1}}
\newcommand{\charpoly}[2]{p_{#1}\left(#2\right)}
\newcommand{\eigenspace}[2]{\mathcal{E}_{#1}\left(#2\right)}
\newcommand{\eigensystem}[3]{\lambda&=#2&\eigenspace{#1}{#2}&=\spn{\set{#3}}}
\newcommand{\geneigenspace}[2]{\mathcal{G}_{#1}\left(#2\right)}
\newcommand{\algmult}[2]{\alpha_{#1}\left(#2\right)}
\newcommand{\geomult}[2]{\gamma_{#1}\left(#2\right)}
\newcommand{\indx}[2]{\iota_{#1}\left(#2\right)}
\newcommand{\ltdefn}[3]{#1\colon #2\rightarrow#3}
\newcommand{\lteval}[2]{#1\left(#2\right)}
\newcommand{\ltinverse}[1]{#1^{-1}}
\newcommand{\restrict}[2]{{#1}|_{#2}}
\newcommand{\preimage}[2]{#1^{-1}\left(#2\right)}
\newcommand{\rng}[1]{\mathcal{R}\!\left(#1\right)}
\newcommand{\krn}[1]{\mathcal{K}\!\left(#1\right)}
\newcommand{\compose}[2]{{#1}\circ{#2}}
\newcommand{\vslt}[2]{\mathcal{LT}\left(#1,\,#2\right)}
\newcommand{\isomorphic}{\cong}
\newcommand{\similar}[2]{\inverse{#2}#1#2}
\newcommand{\vectrepname}[1]{\rho_{#1}}
\newcommand{\vectrep}[2]{\lteval{\vectrepname{#1}}{#2}}
\newcommand{\vectrepinvname}[1]{\ltinverse{\vectrepname{#1}}}
\newcommand{\vectrepinv}[2]{\lteval{\ltinverse{\vectrepname{#1}}}{#2}}
\newcommand{\matrixrep}[3]{M^{#1}_{#2,#3}}
\newcommand{\matrixrepcolumns}[4]{\left\lbrack \left.\vectrep{#2}{\lteval{#1}{\vect{#3}_{1}}}\right|\left.\vectrep{#2}{\lteval{#1}{\vect{#3}_{2}}}\right|\left.\vectrep{#2}{\lteval{#1}{\vect{#3}_{3}}}\right|\ldots\left|\vectrep{#2}{\lteval{#1}{\vect{#3}_{#4}}}\right.\right\rbrack}
\newcommand{\cbm}[2]{C_{#1,#2}}
\newcommand{\jordan}[2]{J_{#1}\left(#2\right)}
\newcommand{\hadamard}[2]{#1\circ #2}
\newcommand{\hadamardidentity}[1]{J_{#1}}
\newcommand{\hadamardinverse}[1]{\widehat{#1}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Archetype T Archetype T
⬜ Injective linear transformation, abstract vector spaces, larger codomain
⬜ Summary Domain and codomain are polynomials. Domain has dimension 5, while codomain has dimension 6. Is injective, can not be surjective.
⬜
Definition A linear transformation (
Definition LT ).
\begin{equation*}
\ltdefn{T}{P_4}{P_5},\quad\lteval{T}{p(x)}=(x-2)p(x)
\end{equation*}
⬜
Kernel A basis for the kernel of the linear transformation (
Definition KLT ).
\begin{equation*}
\set{\ }
\end{equation*}
⬜
Injective? Is the linear transformation injective (
Definition ILT )? Yes.
Since the kernel is trivial
Theorem KILT tells us that the linear transformation is injective.
⬜
Spanning Set for Range A spanning set for the range of a linear transformation (
Definition RLT ) can be constructed easily by evaluating the linear transformation on a standard basis (
Theorem SSRLT ).
\begin{equation*}
\set{
x-2,\,
x^2-2x,\,
x^3-2x^2,\,
x^4-2x^3,
x^5-2x^4,
x^6-2x^5}
\end{equation*}
⬜
Range A basis for the range of the linear transformation (
Definition RLT ). If the linear transformation is injective, then the spanning set just constructed is guaranteed to be linearly independent (
Theorem ILTLI ) and is therefore a basis of the range with no changes. Injective or not, this spanning set can be converted to a “nice” linearly independent spanning set by making the vectors the rows of a matrix (perhaps after using a vector representation), row-reducing, and retaining the nonzero rows (
Theorem BRS ), and perhaps un-coordinatizing.
\begin{equation*}
\set{
-\frac{1}{32}x^5+1,\,
-\frac{1}{16}x^5+x,\,
-\frac{1}{8}x^5+x^2,\,
-\frac{1}{4}x^5+x^3,\,
-\frac{1}{2}x^5+x^4
}
\end{equation*}
⬜
Surjective? Is the linear transformation surjective (
Definition SLT )? No.
The dimension of the range is 5, and the codomain (
\(P_5\) ) has dimension 6. So the transformation is not surjective. Notice too that since the domain
\(P_4\) has dimension 5, it is impossible for the range to have a dimension greater than 5, and no matter what the actual definition of the function, it cannot possibly be surjective in this situation.
To be more precise, verify that
\(1+x+x^2+x^3+x^4\not\in\rng{T}\text{,}\) by setting the output equal to this vector and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the preimage,
\(\preimage{T}{1+x+x^2+x^3+x^4}\text{,}\) is nonempty. This alone is sufficient to see that the linear transformation is not onto.
⬜
Subspace Dimensions Subspace dimensions associated with the linear transformation (
Definition ROLT ,
Definition NOLT ). Verify
Theorem RPNDD , and examine parallels with earlier results for matrices.
\begin{align*}
\text{rank}&=5&\text{nullity}&=0&\text{domain}&=5
\end{align*}
⬜
Invertible? Is the linear transformation invertible (
Definition IVLT , and examine parallels with the existence of matrix inverses.)? No.
The relative dimensions of the domain and codomain prohibit any possibility of being surjective, so apply
Theorem ILTIS .
⬜
Matrix Representation Matrix representation of the linear transformation, as given by
Definition MR and explained by
Theorem FTMR .
\begin{equation*}
\text{domain basis}=\set{1,\,x,\,x^2,\,x^3,\,x^4}
\end{equation*}
\begin{equation*}
\text{codomain basis}=\set{1,\,x,\,x^2,\,x^3,\,x^4,\,x^5}
\end{equation*}
\begin{equation*}
\text{matrix representation}=\begin{bmatrix}
-2 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\end{equation*}
You have attempted
of
activities on this page.