Definition D. Dimension.
Suppose that is a vector space and is a basis of Then the dimension of is defined by If has no finite bases, we say has infinite dimension.
.dimension()
. Here is an example of a subspace with dimension 2.xxxxxxxxxx
V = QQ^4
v1 = vector(QQ, [2, -1, 3, 1])
v2 = vector(QQ, [3, -3, 4, 0])
v3 = vector(QQ, [1, -2, 1, -1])
v4 = vector(QQ, [4, -5, 5, -1])
W = span([v1, v2, v3, v4])
W
xxxxxxxxxx
W.dimension()
.nullity()
, .left_nullity()
, .right_nullity()
, where the first two are equal and correspond to Sage’s preference for rows, and the third is the column version used by the text. That said, a “row version” of Theorem RPNC is also true.xxxxxxxxxx
A = matrix(QQ, [[-1, 0, -4, -3, 1, -1, 0, 1, -1],
[ 1, 1, 6, 6, 5, 3, 4, -5, 3],
[ 2, 0, 7, 5, -3, 1, -1, -1, 2],
[ 2, 1, 6, 6, 3, 1, 3, -3, 5],
[-2, 0, -1, -1, 3, 3, 1, -3, -4],
[-1, 1, 4, 4, 7, 5, 4, -7, -1]])
A.rank()
xxxxxxxxxx
A.right_nullity()
xxxxxxxxxx
A.rank() + A.right_nullity() == A.ncols()
xxxxxxxxxx
A.rank() + A.left_nullity() == A.nrows()
xxxxxxxxxx
A = matrix(QQ, [[ 2, 3, -3, 2, 8, -4],
[ 3, 4, -4, 4, 8, 1],
[-2, -2, 3, -3, -2, -7],
[ 0, 1, -1, 2, 3, 4],
[ 2, 1, 0, 1, -4, 4],
[ 1, 2, -2, 1, 7, -5]])
not A.is_singular()
xxxxxxxxxx
A.rank() == A.ncols()
xxxxxxxxxx
A.right_nullity() == 0