Archetype
Logo image

Archetype S Archetype S

⬜     Linear transformation, abstract vector spaces
⬜  Summary   Domain is column vectors, codomain is matrices. Domain is dimension 3 and codomain is dimension 4. Not injective, not surjective.
⬜  Definition  A linear transformation (Definition LT).
\begin{equation*} \ltdefn{T}{\complex{3}}{M_{22}},\quad \lteval{T}{\colvector{a\\b\\c}}= \begin{bmatrix} a-b&2a+2b+c\\ 3a+b+c&-2a-6b-2c \end{bmatrix} \end{equation*}
⬜  Kernel  A basis for the kernel of the linear transformation (Definition KLT).
\begin{equation*} \set{\colvector{-1\\-1\\4}} \end{equation*}
⬜  Injective?  Is the linear transformation injective (Definition ILT)? No.
Since the kernel is nontrivial Theorem KILT tells us that the linear transformation is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity of at least 1, just from checking dimensions of the domain and the codomain. In particular, verify that
\begin{align*} \lteval{T}{\colvector{2\\1\\3}}&=\begin{bmatrix}1&9\\10&-16\end{bmatrix} & \lteval{T}{\colvector{0\\-1\\11}}&=\begin{bmatrix}1&9\\10&-16\end{bmatrix}\text{.} \end{align*}
This demonstration that \(T\) is not injective is constructed with the observation that
\begin{align*} \colvector{0\\-1\\11}&=\colvector{2\\1\\3}+\colvector{-2\\-2\\8}\\ \end{align*}
and
\begin{align*} \vect{z}&=\colvector{-2\\-2\\8}\in\krn{T} \end{align*}
so the vector \(\vect{z}\) effectively “does nothing” in the evaluation of \(T\text{.}\)
⬜  Spanning Set for Range  A spanning set for the range of a linear transformation (Definition RLT) can be constructed easily by evaluating the linear transformation on a standard basis (Theorem SSRLT).
\begin{equation*} \set{\begin{bmatrix}1&2\\3&-2\end{bmatrix},\, \begin{bmatrix}-1&2\\1&-6\end{bmatrix},\, \begin{bmatrix}0&1\\1&-2\end{bmatrix}} \end{equation*}
⬜  Range  A basis for the range of the linear transformation (Definition RLT). If the linear transformation is injective, then the spanning set just constructed is guaranteed to be linearly independent (Theorem ILTLI) and is therefore a basis of the range with no changes. Injective or not, this spanning set can be converted to a “nice” linearly independent spanning set by making the vectors the rows of a matrix (perhaps after using a vector representation), row-reducing, and retaining the nonzero rows (Theorem BRS), and perhaps un-coordinatizing.
\begin{equation*} \set{ \begin{bmatrix}1&0\\1&2\end{bmatrix},\, \begin{bmatrix}0&1\\1&-2\end{bmatrix} } \end{equation*}
⬜  Surjective?  Is the linear transformation surjective (Definition SLT)? No.
The dimension of the range is 2, and the codomain (\(M_{22}\)) has dimension 4. So the transformation is not surjective. Notice too that since the domain \(\complex{3}\) has dimension 3, it is impossible for the range to have a dimension greater than 3, and no matter what the actual definition of the function, it cannot possibly be surjective in this situation.
To be more precise, verify that \(\begin{bmatrix}2& -1\\1& 3\end{bmatrix}\not\in\rng{T}\text{,}\) by setting the output of \(T\) equal to this matrix and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the preimage, \(\preimage{T}{\begin{bmatrix}2& -1\\1& 3\end{bmatrix}}\text{,}\) is empty. This alone is sufficient to see that the linear transformation is not onto.
⬜  Subspace Dimensions  Subspace dimensions associated with the linear transformation (Definition ROLT, Definition NOLT). Verify Theorem RPNDD, and examine parallels with earlier results for matrices.
\begin{align*} \text{rank}&=2&\text{nullity}&=1&\text{domain}&=3 \end{align*}
⬜  Invertible?  Is the linear transformation invertible (Definition IVLT, and examine parallels with the existence of matrix inverses.)? No.
Not injective (Theorem ILTIS), and the relative dimensions of the domain and codomain prohibit any possibility of being surjective.
⬜  Matrix Representation  Matrix representation of the linear transformation, as given by Definition MR and explained by Theorem FTMR.
\begin{equation*} \text{domain basis}=\set{\colvector{1\\0\\0},\,\colvector{0\\1\\0},\,\colvector{0\\0\\1}} \end{equation*}
\begin{equation*} \text{codomain basis}=\set{\begin{bmatrix}1&0\\0&0\end{bmatrix},\, \begin{bmatrix}0&1\\0&0\end{bmatrix},\, \begin{bmatrix}0&0\\1&0\end{bmatrix},\, \begin{bmatrix}0&0\\0&1\end{bmatrix}} \end{equation*}
\begin{equation*} \text{matrix representation}=\begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 1 \\ 3 & 1 & 1 \\ -2 & -6 & -2 \end{bmatrix} \end{equation*}
You have attempted of activities on this page.