Skip to main content\(\newcommand{\orderof}[1]{\sim #1}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\reals}{\mathbb{R}}
\newcommand{\real}[1]{\mathbb{R}^{#1}}
\newcommand{\complexes}{\mathbb{C}}
\newcommand{\complex}[1]{\mathbb{C}^{#1}}
\newcommand{\conjugate}[1]{\overline{#1}}
\newcommand{\modulus}[1]{\left\lvert#1\right\rvert}
\newcommand{\zerovector}{\vect{0}}
\newcommand{\zeromatrix}{\mathcal{O}}
\newcommand{\innerproduct}[2]{\left\langle#1,\,#2\right\rangle}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\dimension}[1]{\dim\left(#1\right)}
\newcommand{\nullity}[1]{n\left(#1\right)}
\newcommand{\rank}[1]{r\left(#1\right)}
\newcommand{\ds}{\oplus}
\newcommand{\detname}[1]{\det\left(#1\right)}
\newcommand{\detbars}[1]{\left\lvert#1\right\rvert}
\newcommand{\trace}[1]{t\left(#1\right)}
\newcommand{\sr}[1]{#1^{1/2}}
\newcommand{\spn}[1]{\left\langle#1\right\rangle}
\newcommand{\nsp}[1]{\mathcal{N}\!\left(#1\right)}
\newcommand{\csp}[1]{\mathcal{C}\!\left(#1\right)}
\newcommand{\rsp}[1]{\mathcal{R}\!\left(#1\right)}
\newcommand{\lns}[1]{\mathcal{L}\!\left(#1\right)}
\newcommand{\per}[1]{#1^\perp}
\newcommand{\augmented}[2]{\left\lbrack\left.#1\,\right\rvert\,#2\right\rbrack}
\newcommand{\linearsystem}[2]{\mathcal{LS}\!\left(#1,\,#2\right)}
\newcommand{\homosystem}[1]{\linearsystem{#1}{\zerovector}}
\newcommand{\rowopswap}[2]{R_{#1}\leftrightarrow R_{#2}}
\newcommand{\rowopmult}[2]{#1R_{#2}}
\newcommand{\rowopadd}[3]{#1R_{#2}+R_{#3}}
\newcommand{\leading}[1]{\boxed{#1}}
\newcommand{\rref}{\xrightarrow{\text{RREF}}}
\newcommand{\elemswap}[2]{E_{#1,#2}}
\newcommand{\elemmult}[2]{E_{#2}\left(#1\right)}
\newcommand{\elemadd}[3]{E_{#2,#3}\left(#1\right)}
\newcommand{\scalarlist}[2]{{#1}_{1},\,{#1}_{2},\,{#1}_{3},\,\ldots,\,{#1}_{#2}}
\newcommand{\vect}[1]{\mathbf{#1}}
\newcommand{\colvector}[1]{\begin{bmatrix}#1\end{bmatrix}}
\newcommand{\vectorcomponents}[2]{\colvector{#1_{1}\\#1_{2}\\#1_{3}\\\vdots\\#1_{#2}}}
\newcommand{\vectorlist}[2]{\vect{#1}_{1},\,\vect{#1}_{2},\,\vect{#1}_{3},\,\ldots,\,\vect{#1}_{#2}}
\newcommand{\vectorentry}[2]{\left\lbrack#1\right\rbrack_{#2}}
\newcommand{\matrixentry}[2]{\left\lbrack#1\right\rbrack_{#2}}
\newcommand{\lincombo}[3]{#1_{1}\vect{#2}_{1}+#1_{2}\vect{#2}_{2}+#1_{3}\vect{#2}_{3}+\cdots +#1_{#3}\vect{#2}_{#3}}
\newcommand{\matrixcolumns}[2]{\left\lbrack\vect{#1}_{1}|\vect{#1}_{2}|\vect{#1}_{3}|\ldots|\vect{#1}_{#2}\right\rbrack}
\newcommand{\transpose}[1]{#1^{t}}
\newcommand{\inverse}[1]{#1^{-1}}
\newcommand{\submatrix}[3]{#1\left(#2|#3\right)}
\newcommand{\adj}[1]{\transpose{\left(\conjugate{#1}\right)}}
\newcommand{\adjoint}[1]{#1^\ast}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\setparts}[2]{\left\lbrace#1\,\middle|\,#2\right\rbrace}
\newcommand{\card}[1]{\left\lvert#1\right\rvert}
\newcommand{\setcomplement}[1]{\overline{#1}}
\newcommand{\charpoly}[2]{p_{#1}\left(#2\right)}
\newcommand{\eigenspace}[2]{\mathcal{E}_{#1}\left(#2\right)}
\newcommand{\eigensystem}[3]{\lambda&=#2&\eigenspace{#1}{#2}&=\spn{\set{#3}}}
\newcommand{\geneigenspace}[2]{\mathcal{G}_{#1}\left(#2\right)}
\newcommand{\algmult}[2]{\alpha_{#1}\left(#2\right)}
\newcommand{\geomult}[2]{\gamma_{#1}\left(#2\right)}
\newcommand{\indx}[2]{\iota_{#1}\left(#2\right)}
\newcommand{\ltdefn}[3]{#1\colon #2\rightarrow#3}
\newcommand{\lteval}[2]{#1\left(#2\right)}
\newcommand{\ltinverse}[1]{#1^{-1}}
\newcommand{\restrict}[2]{{#1}|_{#2}}
\newcommand{\preimage}[2]{#1^{-1}\left(#2\right)}
\newcommand{\rng}[1]{\mathcal{R}\!\left(#1\right)}
\newcommand{\krn}[1]{\mathcal{K}\!\left(#1\right)}
\newcommand{\compose}[2]{{#1}\circ{#2}}
\newcommand{\vslt}[2]{\mathcal{LT}\left(#1,\,#2\right)}
\newcommand{\isomorphic}{\cong}
\newcommand{\similar}[2]{\inverse{#2}#1#2}
\newcommand{\vectrepname}[1]{\rho_{#1}}
\newcommand{\vectrep}[2]{\lteval{\vectrepname{#1}}{#2}}
\newcommand{\vectrepinvname}[1]{\ltinverse{\vectrepname{#1}}}
\newcommand{\vectrepinv}[2]{\lteval{\ltinverse{\vectrepname{#1}}}{#2}}
\newcommand{\matrixrep}[3]{M^{#1}_{#2,#3}}
\newcommand{\matrixrepcolumns}[4]{\left\lbrack \left.\vectrep{#2}{\lteval{#1}{\vect{#3}_{1}}}\right|\left.\vectrep{#2}{\lteval{#1}{\vect{#3}_{2}}}\right|\left.\vectrep{#2}{\lteval{#1}{\vect{#3}_{3}}}\right|\ldots\left|\vectrep{#2}{\lteval{#1}{\vect{#3}_{#4}}}\right.\right\rbrack}
\newcommand{\cbm}[2]{C_{#1,#2}}
\newcommand{\jordan}[2]{J_{#1}\left(#2\right)}
\newcommand{\hadamard}[2]{#1\circ #2}
\newcommand{\hadamardidentity}[1]{J_{#1}}
\newcommand{\hadamardinverse}[1]{\widehat{#1}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix NL Notation
Symbol |
Description |
Location |
\(A\) |
Matrix |
Definition M |
\(\matrixentry{A}{ij}\) |
Matrix Entries |
Definition M |
\(\vect{v}\) |
Column Vector |
Definition CV |
\(\vectorentry{\vect{v}}{i}\) |
Column Vector Entries |
Definition CV |
\(\zerovector\) |
Zero Column Vector |
Definition ZCV |
\(\linearsystem{A}{\vect{b}}\) |
Matrix Representation of a Linear System |
Definition MRLS |
\(\augmented{A}{\vect{b}}\) |
Augmented Matrix |
Definition AM |
\(\rowopswap{i}{j}\) |
Row Operation, Swap |
Definition RO |
\(\rowopmult{\alpha}{i}\) |
Row Operation, Multiply |
Definition RO |
\(\rowopadd{\alpha}{i}{j}\) |
Row Operation, Add |
Definition RO |
\(r,\ D,\ F\) |
Reduced Row-Echelon Form Analysis |
Definition RREF |
\(\nsp{A}\) |
Null Space of a Matrix |
Definition NSM |
\(I_m\) |
Identity Matrix |
Definition IM |
\(\complex{m}\) |
Vector Space of Column Vectors |
Definition VSCV |
\(\vect{u}=\vect{v}\) |
Column Vector Equality |
Definition CVE |
\(\vect{u}+\vect{v}\) |
Column Vector Addition |
Definition CVA |
\(\alpha\vect{u}\) |
Column Vector Scalar Multiplication |
Definition CVSM |
\(\spn{S}\) |
Span of a Set of Vectors |
Definition SSCV |
\(\conjugate{\vect{u}}\) |
Complex Conjugate of a Column Vector |
Definition CCCV |
\(\innerproduct{\vect{u}}{\vect{v}}\) |
Inner Product |
Definition IP |
\(\norm{\vect{v}}\) |
Norm of a Vector |
Definition NV |
\(\vect{e}_i\) |
Standard Unit Vectors |
Definition SUV |
\(M_{mn}\) |
Vector Space of Matrices |
Definition VSM |
\(A=B\) |
Matrix Equality |
Definition ME |
\(A+B\) |
Matrix Addition |
Definition MA |
\(\alpha A\) |
Matrix Scalar Multiplication |
Definition MSM |
\(\zeromatrix\) |
Zero Matrix |
Definition ZM |
\(\transpose{A}\) |
Transpose of a Matrix |
Definition TM |
\(\conjugate{A}\) |
Complex Conjugate of a Matrix |
Definition CCM |
\(\adjoint{A}\) |
Adjoint |
Definition A |
\(A\vect{u}\) |
Matrix-Vector Product |
Definition MVP |
\(AB\) |
Matrix Multiplication |
Definition MM |
\(\inverse{A}\) |
Matrix Inverse |
Definition MI |
\(\csp{A}\) |
Column Space of a Matrix |
Definition CSM |
\(\rsp{A}\) |
Row Space of a Matrix |
Definition RSM |
\(\lns{A}\) |
Left Null Space |
Definition LNS |
\(U+V\) |
Sum of Subspaces |
Definition SOS |
\(\dimension{V}\) |
Dimension |
Definition D |
\(\nullity{A}\) |
Nullity of a Matrix |
Definition NOM |
\(\rank{A}\) |
Rank of a Matrix |
Definition ROM |
\(\elemswap{i}{j}\) |
Elementary Matrix, Swap |
Definition ELEM |
\(\elemmult{\alpha}{i}\) |
Elementary Matrix, Multiply |
Definition ELEM |
\(\elemadd{\alpha}{i}{j}\) |
Elementary Matrix, Add |
Definition ELEM |
\(\submatrix{A}{i}{j}\) |
SubMatrix |
Definition SM |
\(\detbars{A}\) |
Determinant of a Matrix, Bars |
Definition DM |
\(\detname{A}\) |
Determinant of a Matrix, Functional |
Definition DM |
\(\algmult{A}{\lambda}\) |
Algebraic Multiplicity of an Eigenvalue |
Definition AME |
\(\geomult{A}{\lambda}\) |
Geometric Multiplicity of an Eigenvalue |
Definition GME |
\(\ltdefn{T}{U}{V}\) |
Linear Transformation |
Definition LT |
\(\krn{T}\) |
Kernel of a Linear Transformation |
Definition KLT |
\(\rng{T}\) |
Range of a Linear Transformation |
Definition RLT |
\(\rank{T}\) |
Rank of a Linear Transformation |
Definition ROLT |
\(\nullity{T}\) |
Nullity of a Linear Transformation |
Definition NOLT |
\(\vectrep{B}{\vect{w}}\) |
Vector Representation |
Definition VR |
\(\matrixrep{T}{B}{C}\) |
Matrix Representation |
Definition MR |
\(\alpha=\beta\) |
Complex Number Equality |
Definition CNE |
\(\alpha+\beta\) |
Complex Number Addition |
Definition CNA |
\(\alpha\beta\) |
Complex Number Multiplication |
Definition CNM |
\(\conjugate{\alpha}\) |
Conjugate of a Complex Number |
Definition CCN |
\(x\in S\) |
Set Membership |
Definition SET |
\(S\subseteq T\) |
Subset |
Definition SSET |
\(\emptyset\) |
Empty Set |
Definition ES |
\(S=T\) |
Set Equality |
Definition SE |
\(\card{S}\) |
Cardinality |
Definition C |
\(S\cup T\) |
Set Union |
Definition SU |
\(S\cap T\) |
Set Intersection |
Definition SI |
\(\setcomplement{S}\) |
Set Complement |
Definition SC |