Definition ELEM. Elementary Matrices.
- For
is the square matrix of size with - For
is the square matrix of size with - For
is the square matrix of size with
xxxxxxxxxx
A = elementary_matrix(QQ, 4, row1=0, row2=2); A
xxxxxxxxxx
A = elementary_matrix(QQ, 4, row1=1, scale=7); A
xxxxxxxxxx
A = elementary_matrix(QQ, 4, row1=3, row2=1, scale=9); A
row1
is always the row that is being changed. The keywords can be removed, but the scale
keyword must be used to create the second type of elementary matrix, to avoid confusion with the first type.xxxxxxxxxx
A = matrix(QQ, [[6, -2, 3, -2],
[3, 3, 1, 8],
[4, 0, 5, 4]])
B = copy(A)
B.swap_rows(0,2)
E1 = elementary_matrix(QQ, 3, row1=0, row2=2)
B.rescale_row(1, 5)
E2 = elementary_matrix(QQ, 3, row1=1, scale=5)
B.add_multiple_of_row(1, 0, -3)
E3 = elementary_matrix(QQ, 3, row1=1, row2=0, scale=-3)
B
xxxxxxxxxx
E3*E2*E1*A
xxxxxxxxxx
B == E3*E2*E1*A
xxxxxxxxxx
R = E3*E2*E1
R.is_singular()
xxxxxxxxxx
R
R
, the product of three elementary matrices, can be construed as the collective effect of the three row operations employed. With more row operations, R
might look even less like an identity matrix. As the product of nonsingular matrices (Theorem EMN), R
is nonsingular (Theorem NPNF).B
above is not in reduced row-echelon form (it was just row-equivalent to A
). What if we were to begin with a matrix and track all of the row operations required to bring the matrix to reduced row-echelon form? As above, we could form the associated elementary matrices and form their product, creating a single matrix R
that captures all of the row operations.xxxxxxxxxx
A = matrix(QQ,[[ 4, 3, -2, -9, -11, -14, -4, 11, -4, 4],
[ 0, 1, 0, -1, -1, -3, -2, 3, 6, 15],
[ 0, 1, 1, 1, 3, 0, -3, -5, -9, -3],
[-3, 3, 3, 6, 12, 3, -9, -12, -9, 15],
[-2, 0, 2, 3, 5, 3, -3, -5, -3, 7],
[ 3, 3, -1, -7, -8, -12, -5, 8, -4, 9],
[ 0, -1, 1, 2, 2, 5, 3, -6, -8, -12],
[-1, -2, -1, 1, -2, 5, 6, 3, 6, -8],
[ 2, 1, -3, -6, -8, -7, 0, 12, 11, 8],
[-3, -2, 2, 5, 5, 9, 2, -7, -4, -3]])
A.determinant()
xxxxxxxxxx
B = matrix(QQ, 15, [
[-5, -5, -5, 4, 1, 1, -3, 0, 4, 4, -2, -4, 2, 3, -1],
[ 1, 1, -4, 3, 3, 4, 1, -1, -5, 4, -3, 0, -1, 0, 0],
[ 3, 4, -2, 3, -1, -5, -1, -4, -5, 0, -1, 2, -4, -1, -1],
[ 2, -4, 4, -3, -3, -3, -1, -3, -3, -1, 2, 4, -1, -1, -3],
[ 1, 4, -3, -1, -2, -2, 1, -1, 3, -5, -4, -2, -2, -2, -5],
[-1, -2, 4, 0, 4, 1, 1, 4, -5, 3, 1, -1, 4, 2, -2],
[ 4, 3, 2, 4, 4, -5, 2, -5, -5, 2, -5, -4, -4, 0, 3],
[ 1, -2, 0, -2, -2, 0, 2, 3, 1, 2, -4, 0, -5, -2, 2],
[-4, -4, 2, 1, -1, 4, -2, 1, -2, 2, -1, -1, 3, 4, -1],
[-4, 0, 2, 3, -4, -5, 3, -5, 4, -4, -2, 3, 3, -3, 0],
[ 1, 2, 3, -4, 2, 0, -4, -1, 1, -3, 1, 4, -2, 4, -1],
[-3, 3, 0, 2, 1, -2, -4, 0, -1, -1, -1, 2, 3, 1, -4],
[ 4, 3, -3, -4, 3, 1, -3, 2, 1, -5, -5, -3, 2, 1, 4],
[-3, -5, -1, -5, -2, 0, -3, 1, 2, -1, 0, -4, 3, -2, 3],
[-1, 1, -3, -1, 3, -3, 2, -3, -5, -1, -1, 3, -1, 2, 3]
])
B.determinant()
xxxxxxxxxx
C = random_matrix(QQ, 100, 100)
timeit("C.determinant(); C._cache={}") # random
xxxxxxxxxx
C.determinant() # random