Let \(r=\rank{T}\) and \(s=\nullity{T}\text{.}\) Suppose that \(R=\set{\vectorlist{v}{r}}\subseteq V\) is a basis of the range of \(T\text{,}\) \(\rng{T}\text{,}\) and \(S=\set{\vectorlist{u}{s}}\subseteq U\) is a basis of the kernel of \(T\text{,}\) \(\krn{T}\text{.}\) Note that \(R\) and \(S\) are possibly empty, which means that some of the sums in this proof are “empty” and are equal to the zero vector.
Because the elements of
\(R\) are all in the range of
\(T\text{,}\) each must have a nonempty preimage by
Theorem RPI. Choose vectors
\(\vect{w}_i\in U\text{,}\) \(1\leq i\leq r\) such that
\(\vect{w}_i\in\preimage{T}{\vect{v}_i}\text{.}\) So
\(\lteval{T}{\vect{w}_i}=\vect{v}_i\text{,}\) \(1\leq i\leq r\text{.}\) Consider the set
\begin{equation*}
B=\set{\vectorlist{u}{s},\,\vectorlist{w}{r}}\text{.}
\end{equation*}
We claim that \(B\) is a basis for \(U\text{.}\)
To establish linear independence for \(B\text{,}\) begin with a relation of linear dependence on \(B\text{.}\) So suppose there are scalars \(\scalarlist{a}{s}\) and \(\scalarlist{b}{r}\)
\begin{equation*}
\zerovector=\lincombo{a}{u}{s}+\lincombo{b}{w}{r}\text{.}
\end{equation*}
Then
\begin{align*}
\zerovector&=\lteval{T}{\zerovector}&&
\knowl{./knowl/xref/theorem-LTTZZ.html}{\text{Theorem LTTZZ}}\\
&=T\left(\lincombo{a}{u}{s}+\right.\\
&\quad\quad\quad\quad\left.\lincombo{b}{w}{r}\right)&&
\knowl{./knowl/xref/definition-LI.html}{\text{Definition LI}}\\
&=a_1\lteval{T}{\vect{u}_1}+a_2\lteval{T}{\vect{u}_2}+a_3\lteval{T}{\vect{u}_3}+\cdots+a_s\lteval{T}{\vect{u}_s}+\\
&\quad\quad b_1\lteval{T}{\vect{w}_1}+b_2\lteval{T}{\vect{w}_2}+b_3\lteval{T}{\vect{w}_3}+\cdots+b_r\lteval{T}{\vect{w}_r}&&
\knowl{./knowl/xref/theorem-LTLC.html}{\text{Theorem LTLC}}\\
&=a_1\zerovector+a_2\zerovector+a_3\zerovector+\cdots+a_s\zerovector+\\
&\quad\quad b_1\lteval{T}{\vect{w}_1}+b_2\lteval{T}{\vect{w}_2}+b_3\lteval{T}{\vect{w}_3}+\cdots+b_r\lteval{T}{\vect{w}_r}&&
\knowl{./knowl/xref/definition-KLT.html}{\text{Definition KLT}}\\
&=\zerovector+\zerovector+\zerovector+\cdots+\zerovector+\\
&\quad\quad b_1\lteval{T}{\vect{w}_1}+b_2\lteval{T}{\vect{w}_2}+b_3\lteval{T}{\vect{w}_3}+\cdots+b_r\lteval{T}{\vect{w}_r}&&
\knowl{./knowl/xref/theorem-ZVSM.html}{\text{Theorem ZVSM}}\\
&=b_1\lteval{T}{\vect{w}_1}+b_2\lteval{T}{\vect{w}_2}+b_3\lteval{T}{\vect{w}_3}+\cdots+b_r\lteval{T}{\vect{w}_r}&&
\knowl{./knowl/xref/property-Z.html}{\text{Property Z}}\\
&=b_1\vect{v}_1+b_2\vect{v}_2+b_3\vect{v}_3+\cdots+b_r\vect{v}_r&&
\knowl{./knowl/xref/definition-PI.html}{\text{Definition PI}}\text{.}
\end{align*}
This is a relation of linear dependence on
\(R\) (
Definition RLD), and since
\(R\) is a linearly independent set (
Definition LI), we see that
\(b_1=b_2=b_3=\ldots=b_r=0\text{.}\) Then the original relation of linear dependence on
\(B\) becomes
\begin{align*}
\zerovector&=\lincombo{a}{u}{s}+0\vect{w}_1+0\vect{w}_2+\ldots+0\vect{w}_r\\
&=\lincombo{a}{u}{s}+\zerovector+\zerovector+\ldots+\zerovector&&
\knowl{./knowl/xref/theorem-ZSSM.html}{\text{Theorem ZSSM}}\\
&=\lincombo{a}{u}{s}&&
\knowl{./knowl/xref/property-Z.html}{\text{Property Z}}\text{.}
\end{align*}
But this is again a relation of linear independence (
Definition RLD), now on the set
\(S\text{.}\) Since
\(S\) is linearly independent (
Definition LI), we have
\(a_1=a_2=a_3=\ldots=a_r=0\text{.}\) Since we now know that all the scalars in the relation of linear dependence on
\(B\) must be zero, we have established the linear independence of
\(S\) through
Definition LI.
To now establish that \(B\) spans \(U\text{,}\) choose an arbitrary vector \(\vect{u}\in U\text{.}\) Then \(\lteval{T}{\vect{u}}\in R(T)\text{,}\) so there are scalars \(\scalarlist{c}{r}\) such that
\begin{equation*}
\lteval{T}{\vect{u}}=\lincombo{c}{v}{r}\text{.}
\end{equation*}
Use the scalars \(\scalarlist{c}{r}\) to define a vector \(\vect{y}\in U\text{,}\)
\begin{equation*}
\vect{y}=\lincombo{c}{w}{r}\text{.}
\end{equation*}
Then
\begin{align*}
\lteval{T}{\vect{u}-\vect{y}}&=\lteval{T}{\vect{u}}-\lteval{T}{\vect{y}}&&
\knowl{./knowl/xref/theorem-LTLC.html}{\text{Theorem LTLC}}\\
&=\lteval{T}{\vect{u}}-\lteval{T}{\lincombo{c}{w}{r}}
&&\text{Substitution}\\
&=\lteval{T}{\vect{u}}-\left(c_1\lteval{T}{\vect{w}_1}+c_2\lteval{T}{\vect{w}_2}+\cdots+c_r\lteval{T}{\vect{w}_r}\right)&&
\knowl{./knowl/xref/theorem-LTLC.html}{\text{Theorem LTLC}}\\
&=\lteval{T}{\vect{u}}-\left(\lincombo{c}{v}{r}\right)&&\vect{w}_i\in\preimage{T}{\vect{v}_i}\\
&=\lteval{T}{\vect{u}}-\lteval{T}{\vect{u}}
&&\text{Substitution}\\
&=\zerovector&&
\knowl{./knowl/xref/property-AI.html}{\text{Property AI}}\text{.}
\end{align*}
So the vector \(\vect{u}-\vect{y}\) is sent to the zero vector by \(T\) and hence is an element of the kernel of \(T\text{.}\) As such it can be written as a linear combination of the basis vectors for \(\krn{T}\text{,}\) the elements of the set \(S\text{.}\) So there are scalars \(\scalarlist{d}{s}\) such that
\begin{equation*}
\vect{u}-\vect{y}=\lincombo{d}{u}{s}\text{.}
\end{equation*}
Then
\begin{align*}
\vect{u}&=\left(\vect{u}-\vect{y}\right)+\vect{y}\\
&=\lincombo{d}{u}{s}+\lincombo{c}{w}{r}\text{.}
\end{align*}
This says that for any vector,
\(\vect{u}\text{,}\) from
\(U\text{,}\) there exist scalars (
\(\scalarlist{d}{s}\text{,}\) \(\scalarlist{c}{r}\)) that form
\(\vect{u}\) as a linear combination of the vectors in the set
\(B\text{.}\) In other words,
\(B\) spans
\(U\) (
Definition SS).
So
\(B\) is a basis (
Definition B) of
\(U\) with
\(s+r\) vectors, and thus
\begin{equation*}
\dimension{U}=s+r=\nullity{T}+\rank{T}
\end{equation*}
as desired.