Definition MR. Matrix Representation.
Suppose that is a linear transformation, is a basis for of size and is a basis for of size Then the matrix representation of relative to and is the matrix,
QQ^n
, but we will use non-obvious bases to make it nontrivial and interesting. Here are the components of our first example, one linear function, two vector spaces, four bases.xxxxxxxxxx
x1, x2, x3, x4 = var('x1, x2, x3, x4')
outputs = [3*x1 + 7*x2 + x3 - 4*x4,
2*x1 + 5*x2 + x3 - 3*x4,
-x1 - 2*x2 + x4]
T_symbolic(x1, x2, x3, x4) = outputs
U = QQ^4
V = QQ^3
b0 = vector(QQ, [ 1, 1, -1, 0])
b1 = vector(QQ, [-1, 0, -2, 7])
b2 = vector(QQ, [ 0, 1, -2, 4])
b3 = vector(QQ, [-2, 0, -1, 6])
B = [b0, b1, b2, b3]
c0 = vector(QQ, [ 1, 6, -6])
c1 = vector(QQ, [ 0, 1, -1])
c2 = vector(QQ, [-2, -3, 4])
C = [c0, c1, c2]
d0 = vector(QQ, [ 1, -3, 2, -1])
d1 = vector(QQ, [ 0, 1, 0, 1])
d2 = vector(QQ, [-1, 2, -1, -1])
d3 = vector(QQ, [ 2, -8, 4, -3])
D = [d0, d1, d2, d3]
e0 = vector(QQ, [ 0, 1, -3])
e1 = vector(QQ, [-1, 2, -1])
e2 = vector(QQ, [ 2, -4, 3])
E = [e0, e1, e2]
.matrix()
. We will use numerals to distinguish our two examples.xxxxxxxxxx
U1 = U.subspace_with_basis(B)
V1 = V.subspace_with_basis(C)
T1 = linear_transformation(U1, V1, T_symbolic)
T1.matrix(side='right')
D
and E
.xxxxxxxxxx
U2 = U.subspace_with_basis(D)
V2 = V.subspace_with_basis(E)
T2 = linear_transformation(U2, V2, T_symbolic)
T2.matrix(side='right')
T1
and T2
are not different as functions, despite the fact that Sage treats them as unequal (since they have different matrix representations). We can check that the two functions behave identically, first with random testing. Repeated execution of the following compute cell should always produce True
.xxxxxxxxxx
u = random_vector(QQ, 4)
T1(u) == T2(u)
T1
and T2
agree on a basis for the domain, and to avoid any favoritism, we will use the basis of U
itself. Convince yourself that this is a proper application of Theorem LTDB to demonstrate equality.xxxxxxxxxx
all([T1(u) == T2(u) for u in U.basis()])
xxxxxxxxxx
T1.is_equal_function(T2)
T1
. We need a couple of vector representation linear transformations.xxxxxxxxxx
rhoB = linear_transformation(U1, U, U.basis())
rhoC = linear_transformation(V1, V, V.basis())
T2
version.xxxxxxxxxx
T_symbolic(-3, 4, -5, 2)
xxxxxxxxxx
u = vector(QQ, [-3, 4, -5, 2])
T1(u)
xxxxxxxxxx
(rhoC^-1)(T1.matrix(side='right')*rhoB(u))
.linear_combination_of_basis()
method is the inverse of vector representation (it is “un-coordinatization”).xxxxxxxxxx
output_coord = T1.matrix(side='right')*U1.coordinate_vector(u)
V1.linear_combination_of_basis(output_coord)
side='right'
option?*
for linear transformation composition in Sage?xxxxxxxxxx
x1, x2, x3, x4 = var('x1, x2, x3, x4')
outputs = [-5*x1 - 2*x2 + x3,
4*x1 - 3*x2 - 3*x3,
4*x1 - 6*x2 - 4*x3,
5*x1 + 3*x2 ]
T_symbolic(x1, x2, x3) = outputs
outputs = [-3*x1 - x2 + x3 + 2*x4,
7*x1 + x2 + x3 - x4]
S_symbolic(x1, x2, x3, x4) = outputs
b0 = vector(QQ, [-1, -2, 2])
b1 = vector(QQ, [ 1, 1, 0])
b2 = vector(QQ, [ 0, 3, -5])
U = (QQ^3).subspace_with_basis([b0, b1, b2])
c0 = vector(QQ, [ 0, 0, 2, 1])
c1 = vector(QQ, [ 2, -3, -1, -6])
c2 = vector(QQ, [-2, 3, 2, 7])
c3 = vector(QQ, [ 1, -2, -4, -6])
V = (QQ^4).subspace_with_basis([c0, c1, c2, c3])
d0 = vector(QQ, [3, 4])
d1 = vector(QQ, [2, 3])
W = (QQ^2).subspace_with_basis([d0, d1])
T = linear_transformation(U, V, T_symbolic)
S = linear_transformation(V, W, S_symbolic)
(S*T).matrix('right')
xxxxxxxxxx
S.matrix(side='right')*T.matrix(side='right')
side='right'
option on these three matrix representations?xxxxxxxxxx
x1, x2, x3, x4, x5 = var('x1, x2, x3, x4, x5')
outputs = [ x1 - x2 - 5*x3 + x4 + x5,
x1 - 2*x3 - x4 - x5,
- x2 - 3*x3 + 2*x4 + 2*x5,
-x1 + x2 + 5*x3 - x4 - x5]
T_symbolic(x1, x2, x3, x4, x5) = outputs
b0 = vector(QQ, [-1, 6, 5, 5, 1])
b1 = vector(QQ, [-1, 5, 4, 4, 1])
b2 = vector(QQ, [-2, 4, 3, 2, 5])
b3 = vector(QQ, [ 1, -1, 0, 1, -5])
b4 = vector(QQ, [ 3, -7, -6, -5, -4])
U = (QQ^5).subspace_with_basis([b0, b1, b2, b3, b4])
c0 = vector(QQ, [1, 1, 1, -3])
c1 = vector(QQ, [-2, 3, -6, -7])
c2 = vector(QQ, [0, -1, 1, 2])
c3 = vector(QQ, [-1, 3, -4, -7])
V = (QQ^4).subspace_with_basis([c0, c1, c2, c3])
T_plain = linear_transformation(QQ^5, QQ^4, T_symbolic)
T_fancy = linear_transformation( U, V, T_symbolic)
xxxxxxxxxx
K = T_plain.kernel()
K
xxxxxxxxxx
MK = T_fancy.matrix(side='right').right_kernel()
MK
xxxxxxxxxx
rhoB = linear_transformation(U, QQ^5, (QQ^5).basis())
rho_restrict = rhoB.restrict_domain(K).restrict_codomain(MK)
rho_restrict
xxxxxxxxxx
rho_restrict.is_injective()
xxxxxxxxxx
rho_restrict.is_surjective()
rho_restrict
qualifies as an isomorphism between the linear transformation kernel, K
, and the matrix representation null space, MK
. Only an example, but still very nice. Your turn — can you create a verfication of Theorem RCSI (for this example, or some other nontrivial example you might create yourself)?xxxxxxxxxx
x1, x2, x3, x4 = var('x1, x2, x3, x4')
outputs = [ x1 - 2*x3 - 4*x4,
x2 - x3 - 5*x4,
-x1 - 2*x2 + 2*x3 + 7*x4,
- x2 + x4]
T_symbolic(x1, x2, x3, x4) = outputs
b0 = vector(QQ, [ 1, -2, -1, 8])
b1 = vector(QQ, [ 0, 1, 0, -2])
b2 = vector(QQ, [-1, -2, 2, -5])
b3 = vector(QQ, [-1, -3, 2, -2])
U = (QQ^4).subspace_with_basis([b0, b1, b2, b3])
c0 = vector(QQ, [ 3, -1, 4, -8])
c1 = vector(QQ, [ 1, 0, 1, -1])
c2 = vector(QQ, [ 0, 2, -1, 6])
c3 = vector(QQ, [-1, 2, -2, 8])
V = (QQ^4).subspace_with_basis([c0, c1, c2, c3])
T = linear_transformation(U, V, T_symbolic)
T
xxxxxxxxxx
T.is_invertible()
xxxxxxxxxx
T.matrix(side='right').is_invertible()
xxxxxxxxxx
(T^-1).matrix(side='right') == (T.matrix(side='right'))^-1
T
to a new representation using standard bases for QQ^4
by computing images of the standard basis.xxxxxxxxxx
images = [T(u) for u in (QQ^4).basis()]
T_standard = linear_transformation(QQ^4, QQ^4, images)
T_standard
xxxxxxxxxx
T_standard.matrix(side='right').is_invertible()
T_symbolic
will have an invertible matrix representation, no matter which bases are used. If you look at the matrix representation of T_standard
and the definition of T_symbolic
the construction of this example will be transparent, especially if you know the random matrix constructor,xxxxxxxxxx
A = random_matrix(QQ, 4, algorithm='unimodular', upper_bound=9)
A # random