Consider the linear transformation, \(\ltdefn{S}{P_3}{M_{22}}\text{,}\) given by
\begin{align*}
\lteval{S}{a+bx+cx^2+dx^3}=
\begin{bmatrix}
3a+7b-2c-5d & 8a+14b-2c-11d\\
-4a-8b+2c+6d & 12a+22b-4c-17d
\end{bmatrix}\text{.}
\end{align*}
First, we build a representation relative to the bases,
\begin{align*}
B&=\set{1+2x+x^2-x^3,\,1+3x+x^2+x^3,\,-1-2x+2x^3,\,2+3x+2x^2-5x^3}\\
C&=\set{
\begin{bmatrix}1 & 1 \\ 1 & 2\end{bmatrix},\,
\begin{bmatrix}2 & 3 \\ 2 & 5\end{bmatrix},\,
\begin{bmatrix}-1 & -1 \\ 0 & -2\end{bmatrix},\,
\begin{bmatrix}-1 & -4 \\ -2 & -4\end{bmatrix}
}\text{.}
\end{align*}
We evaluate \(S\) with each element of the basis for the domain, \(B\text{,}\) and coordinatize the result relative to the vectors in the basis for the codomain, \(C\text{.}\) Notice here how we take elements of vector spaces and decompose them into linear combinations of basis elements as the key step in constructing coordinatizations of vectors. There is a system of equations involved almost every time, but we will omit these details since this should be a routine exercise at this stage. We have
\begin{align*}
&\vectrep{C}{\lteval{S}{1+2x+x^2-x^3}}
=\vectrep{C}{\begin{bmatrix}20 & 45 \\ -24 & 69\end{bmatrix}}\\
&\quad=\vectrep{C}{
(-90)\begin{bmatrix}1 & 1 \\ 1 & 2\end{bmatrix}+
37\begin{bmatrix}2 & 3 \\ 2 & 5\end{bmatrix}+
(-40)\begin{bmatrix}-1 & -1 \\ 0 & -2\end{bmatrix}+
4\begin{bmatrix}-1 & -4 \\ -2 & -4\end{bmatrix}
}
=\colvector{-90\\37\\-40\\4}\\
&\vectrep{C}{\lteval{S}{1+3x+x^2+x^3}}
=\vectrep{C}{\begin{bmatrix}17 & 37 \\ -20 & 57\end{bmatrix}}\\
&\quad=\vectrep{C}{
(-72)\begin{bmatrix}1 & 1 \\ 1 & 2\end{bmatrix}+
29\begin{bmatrix}2 & 3 \\ 2 & 5\end{bmatrix}+
(-34)\begin{bmatrix}-1 & -1 \\ 0 & -2\end{bmatrix}+
3\begin{bmatrix}-1 & -4 \\ -2 & -4\end{bmatrix}
}
=\colvector{-72\\29\\-34\\3}\\
&\vectrep{C}{\lteval{S}{-1-2x+2x^3}}
=\vectrep{C}{\begin{bmatrix}-27 & -58 \\ 32 & -90\end{bmatrix}}\\
&\quad=\vectrep{C}{
114\begin{bmatrix}1 & 1 \\ 1 & 2\end{bmatrix}+
(-46)\begin{bmatrix}2 & 3 \\ 2 & 5\end{bmatrix}+
54\begin{bmatrix}-1 & -1 \\ 0 & -2\end{bmatrix}+
(-5)\begin{bmatrix}-1 & -4 \\ -2 & -4\end{bmatrix}
}
=\colvector{114\\-46\\54\\-5}\\
&\vectrep{C}{\lteval{S}{2+3x+2x^2-5x^3}}
=\vectrep{C}{\begin{bmatrix}48 & 109 \\ -58 & 167\end{bmatrix}}\\
&\quad=\vectrep{C}{
-220\begin{bmatrix}1 & 1 \\ 1 & 2\end{bmatrix}+
91\begin{bmatrix}2 & 3 \\ 2 & 5\end{bmatrix}+
(-96)\begin{bmatrix}-1 & -1 \\ 0 & -2\end{bmatrix}+
10\begin{bmatrix}-1 & -4 \\ -2 & -4\end{bmatrix}
}
=\colvector{-220\\91\\-96\\10}\text{.}
\end{align*}
\begin{equation*}
\matrixrep{S}{B}{C}=
\begin{bmatrix}
-90 & -72 & 114 & -220 \\
37 & 29 & -46 & 91 \\
-40 & -34 & 54 & -96 \\
4 & 3 & -5 & 10
\end{bmatrix}\text{.}
\end{equation*}
Often we use “nice” bases to build matrix representations and the work involved is much easier. Suppose we take bases
\begin{align*}
D&=\set{1,\,x,\,x^2,\,x^3}
&
E&=\set{
\begin{bmatrix}1&0\\0&0\end{bmatrix},\,
\begin{bmatrix}0&1\\0&0\end{bmatrix},\,
\begin{bmatrix}0&0\\1&0\end{bmatrix},\,
\begin{bmatrix}0&0\\0&1\end{bmatrix}}\text{.}
\end{align*}
The evaluation of \(S\) at the elements of \(D\) is easy and coordinatization relative to \(E\) can be done on sight,
\begin{align*}
\vectrep{E}{\lteval{S}{1}}
&=\vectrep{E}{\begin{bmatrix}3 & 8 \\ -4 & 12\end{bmatrix}}\\
&=\vectrep{E}{
3\begin{bmatrix}1&0\\0&0\end{bmatrix}+
8\begin{bmatrix}0&1\\0&0\end{bmatrix}+
(-4)\begin{bmatrix}0&0\\1&0\end{bmatrix}+
12\begin{bmatrix}0&0\\0&1\end{bmatrix}
}
=\colvector{3 \\ 8 \\ -4 \\ 12}\\
\vectrep{E}{\lteval{S}{x}}
&=\vectrep{E}{\begin{bmatrix}7 & 14 \\ -8 & 22\end{bmatrix}}\\
&=\vectrep{E}{
7\begin{bmatrix}1&0\\0&0\end{bmatrix}+
14\begin{bmatrix}0&1\\0&0\end{bmatrix}+
(-8)\begin{bmatrix}0&0\\1&0\end{bmatrix}+
22\begin{bmatrix}0&0\\0&1\end{bmatrix}
}
=\colvector{7 \\ 14 \\ -8 \\ 22}\\
\vectrep{E}{\lteval{S}{x^2}}
&=\vectrep{E}{\begin{bmatrix}-2 & -2 \\ 2 & -4\end{bmatrix}}\\
&=\vectrep{E}{
(-2)\begin{bmatrix}1&0\\0&0\end{bmatrix}+
(-2)\begin{bmatrix}0&1\\0&0\end{bmatrix}+
2\begin{bmatrix}0&0\\1&0\end{bmatrix}+
(-4)\begin{bmatrix}0&0\\0&1\end{bmatrix}
}
=\colvector{-2 \\ -2 \\ 2 \\ -4}\\
\vectrep{E}{\lteval{S}{x^3}}
&=\vectrep{E}{\begin{bmatrix}-5 & -11 \\ 6 & -17\end{bmatrix}}\\
&=\vectrep{E}{
(-5)\begin{bmatrix}1&0\\0&0\end{bmatrix}+
(-11)\begin{bmatrix}0&1\\0&0\end{bmatrix}+
6\begin{bmatrix}0&0\\1&0\end{bmatrix}+
(-17)\begin{bmatrix}0&0\\0&1\end{bmatrix}
}\\
&=\colvector{-5 \\ -11 \\ 6 \\ -17}\text{.}
\end{align*}
So the matrix representation of \(S\) relative to \(D\) and \(E\) is
\begin{equation*}
\matrixrep{S}{D}{E}=
\begin{bmatrix}
3 & 7 & -2 & -5 \\
8 & 14 & -2 & -11 \\
-4 & -8 & 2 & 6 \\
12 & 22 & -4 & -17
\end{bmatrix}\text{.}
\end{equation*}
One more time, but now let us use bases
\begin{align*}
F&=\set{1+x-x^2+2x^3,\,-1+2x+2x^3,\,2+x-2x^2+3x^3,\,1+x+2x^3}\\
G&=\set{
\begin{bmatrix}1&1\\-1&2\end{bmatrix},\,
\begin{bmatrix}-1&2\\0&2\end{bmatrix},\,
\begin{bmatrix}2&1\\-2&3\end{bmatrix},\,
\begin{bmatrix}1&1\\0&2\end{bmatrix}
}
\end{align*}
and evaluate \(S\) with the elements of \(F\text{,}\) then coordinatize the results relative to \(G\text{,}\)
\begin{align*}
\vectrep{G}{\lteval{S}{1+x-x^2+2x^3}}
&=\vectrep{G}{\begin{bmatrix}2 & 2 \\ -2 & 4\end{bmatrix}}
=\vectrep{G}{
2\begin{bmatrix}1&1\\-1&2\end{bmatrix}
}
=\colvector{2\\0\\0\\0}\\
\vectrep{G}{\lteval{S}{-1+2x+2x^3}}
&=\vectrep{G}{\begin{bmatrix}1 & -2 \\ 0 & -2\end{bmatrix}}
=\vectrep{G}{
(-1)\begin{bmatrix}-1&2\\0&2\end{bmatrix}
}
=\colvector{0\\-1\\0\\0}\\
\vectrep{G}{\lteval{S}{2+x-2x^2+3x^3}}
&=\vectrep{G}{\begin{bmatrix}2 & 1 \\ -2 & 3\end{bmatrix}}
=\vectrep{G}{
\begin{bmatrix}2&1\\-2&3\end{bmatrix}
}
=\colvector{0\\0\\1\\0}\\
\vectrep{G}{\lteval{S}{1+x+2x^3}}
&=\vectrep{G}{\begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}}
=\vectrep{G}{
0\begin{bmatrix}1&1\\0&2\end{bmatrix}
}
=\colvector{0\\0\\0\\0}\text{.}
\end{align*}
So we arrive at an especially economical matrix representation,
\begin{equation*}
\matrixrep{S}{F}{G}=
\begin{bmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}\text{.}
\end{equation*}