Table of \(\mathbb{Z}_2\times \mathbb{Z}_3\text{:}\)
\begin{equation*}
\begin{array}{c|cccccc}
+&(0,0)&(0,1)&(0,2)&(1,0)&(1,1)&(1,2)\\
\hline
(0,0)&(0,0)&(0,1)&(0,2)&(1,0)&(1,1)&(1,2)\\
(0,1)&(0,1)&(0,2)&(0,0)&(1,1)&(1,2)&(1,0)\\
(0,2)&(0,2)&(0,0)&(0,1)&(1,2)&(1,0)&(1,1)\\
(1,0)&(1,0)&(1,1)&(1,2)&(0,0)&(0,1)&(0,2)\\
(1,1)&(1,1)&(1,2)&(1,0)&(0,1)&(0,2)&(0,0)\\
(1,2)&(1,2)&(1,0)&(1,1)&(0,2)&(0,0)&(0,1)
\end{array}
\end{equation*}
The only two proper subgroups are \(\{(0, 0), (1, 0)\}\) and \(\{(0, 0), (0, 1), (0, 2)\}\)