Definition 13.3.1. Bounded Lattice.
A bounded lattice is a lattice that contains both a least element and a greatest element.
| Commutative Laws | \(a\lor b = b\lor a\) | \(a \land b = b \land a \) |
| Associative Laws | \(a \lor (b \lor c) = (a \lor b) \lor c \) | \(a \land (b \land c) = (a \land b) \land c\) |
| Distributive Laws | \(a \land (b \lor c) = (a \land b) \lor (a \land c)\) | \(a \lor (b \land c) = (a \lor b) \land (a \lor c)\) |
| Identity Laws | \(a \lor 0 = 0 \lor a = a\) | \(a \land 1= 1 \land a = a\) |
| Complement Laws | \(a \lor \bar{a} = 1 \) | \(a \land \bar{a}= 0\) |
| Idempotent Laws | \(a \lor a = a\) | \(a \land a = a\) |
| Null Laws | \(a \lor 1 = 1\) | \(a \land 0 = 0 \) |
| Absorption Laws | \(a \lor (a \land b) = a\) | \(a \land (a \lor b) = a \) |
| DeMorganβs Laws | \(\overline{a \lor b} = \bar{a} \land \bar{b}\) | \(\overline{a \land b} = \bar{a} \lor \bar{b} \) |
| Involution Law | \(\overline{\bar{a}} = a\) | \(\quad\) |