Skip to main content
Logo image

Active Calculus 2nd Ed

Activity 8.2.2.
Let \(f(x) = \cos(x)\text{.}\) Through the questions that follow, we seek to find the degree \(n\) Taylor polynomial for \(f(x)\) centered at \(a = 0\text{.}\)
(a)
Determine the first \(8\) derivatives of \(f(x) = \cos(x)\) and evaluate each at \(a = 0\text{.}\) Summarize your work by filling in all the blanks below.
\begin{align*} k \amp= 0 \amp f(x) \amp= \cos(x) \amp f(0) \amp= \cos(0) = 1 \\ k \amp= \fillinmath{XX} \amp f'(x) \amp= \fillinmath{XXXXX} \amp f'(0) \amp= \fillinmath{XXXXX} \\ k \amp= \fillinmath{XX} \amp f''(x) \amp= \fillinmath{XXXXX} \amp f''(0) \amp= \fillinmath{XXXXX} \\ k \amp= \fillinmath{XX} \amp f'''(x) \amp= \fillinmath{XXXXX} \amp f'''(0) \amp= \fillinmath{XXXXX} \\ k \amp= \fillinmath{XX} \amp f^{(4)}(x) \amp= \fillinmath{XXXXX} \amp f^{(4)}(0) \amp= \fillinmath{XXXXX} \\ k \amp= \fillinmath{XX} \amp f^{(5)}(x) \amp= \fillinmath{XXXXX} \amp f^{(5)}(0) \amp= \fillinmath{XXXXX} \\ k \amp= \fillinmath{XX} \amp f^{(6)}(x) \amp= \fillinmath{XXXXX} \amp f^{(6)}(0) \amp= \fillinmath{XXXXX} \\ k \amp= \fillinmath{XX} \amp f^{(7)}(x) \amp= \fillinmath{XXXXX} \amp f^{(7)}(0) \amp= \fillinmath{XXXXX} \\ k \amp= \fillinmath{XX} \amp f^{(8)}(x) \amp= \fillinmath{XXXXX} \amp f^{(8)}(0) \amp= \fillinmath{XXXXX} \end{align*}
(b)
Use your work in (a) along with the fact that the coefficients of the Taylor polynomial are determined by \(c_k = \frac{f^{(k)}(0)}{k!}\) to find formulas for \(T_2(x)\text{,}\) \(T_4(x)\text{,}\) \(T_6(x)\text{,}\) and \(T_8(x)\text{.}\)
(c)
Based on the patterns you observe in your prior work, what do you expect to be the formula for \(T_{10}(x)\text{?}\)
(d)
Use appropriate computing technology to plot \(T_4(x)\) and \(T_6(x)\) along with \(f(x) = \cos(x)\) and \(T_2(x)\) in the same window as shown in Figure 8.2.9.
Figure 8.2.9. The function \(f(x)=\cos(x)\) and its degree \(2\) Taylor approximation \(T_2(x) = 1 - \frac{1}{2}x^2\) near the point \((0,f(0))\text{.}\)
What do you notice?
(e)
Build a spreadsheet similar to the one in Table 8.1.9 and Table 8.1.10 from Activity 8.1.4, but do so using \(\Delta x = 0.2\text{,}\) a start value of \(x = -2\text{,}\) and the functions \(f(x) = \cos(x)\text{,}\) \(T_2(x)\text{,}\) \(T_4(x)\text{,}\) and \(T_6(x)\text{.}\) The first six columns of your spreadsheet should begin as shown in Table 8.2.12.
Table 8.2.12. Comparing \(f(x) = \cos(x)\) and its degree \(2\text{,}\) \(4\text{,}\) and \(6\) approximations near \(a = 0\text{.}\)
\(\Delta x\) \(x\) \(f(x)\) \(T_2(x)\) \(T_4(x)\) \(T_6(x)\)
\(0.2\) \(-2.0\) \(-0.41615\) \(-1.00000\) \(-0.33333\) \(-0.42222\)
\(0.2\) \(-1.8\) \(-0.22720\) \(-0.62000\) \(-0.18260\) \(-0.22984\)
and the last three columns of your spreadsheet should begin as follows:
Table 8.2.13. The absolute error between \(f(x) = \cos(x)\) and its degree \(2\text{,}\) \(4\text{,}\) and \(6\) approximations.
\(|f(x)-T_2(x)|\) \(|f(x)-T_4(x)|\) \(|f(x)-T_6(x)|\)
\(0.58385\) \(0.08281\) \(0.00608\)
\(0.39280\) \(0.04460\) \(0.00263\)
For about what interval of \(x\)-values is it true that \(|f(x) - T_2(x)| \lt 0.1\text{?}\) How does the interval of \(x\)-values change if we instead consider where \(|f(x) - T_4(x)| \lt 0.1\text{?}\) \(|f(x) - T_6(x)| \lt 0.1\text{?}\)