Skip to main content
Logo image

Active Calculus 2nd Ed

Activity 5.6.4.
Consider the functions \(f(x) = 2-x^2\text{,}\) \(g(x) = 2-x^3\text{,}\) and \(h(x) = 2-x^4\text{,}\) all on the interval \([0,1]\text{.}\) For each of the questions that require a numerical answer in what follows, write your answer exactly in fraction form.
described in detail following the image
ADD ALT TEXT TO THIS IMAGE
(a)
On the three sets of axes in the provided figure, sketch a graph of each function on the interval \([0,1]\text{,}\) and compute \(L_1\) and \(R_1\) for each. What do you observe?
(b)
Compute \(M_1\) for each function to approximate \(\int_0^1 f(x) \,dx\text{,}\) \(\int_0^1 g(x) \,dx\text{,}\) and \(\int_0^1 h(x) \,dx\text{,}\) respectively.
(c)
Compute \(T_1\) for each of the three functions, and hence compute \(S_2\) for each of the three functions.
(d)
Evaluate each of the integrals \(\int_0^1 f(x) \,dx\text{,}\) \(\int_0^1 g(x) \,dx\text{,}\) and \(\int_0^1 h(x) \,dx\) exactly using the First FTC.
(e)
For each of the three functions \(f\text{,}\) \(g\text{,}\) and \(h\text{,}\) compare the results of \(L_1\text{,}\) \(R_1\text{,}\) \(M_1\text{,}\) \(T_1\text{,}\) and \(S_2\) to the true value of the corresponding definite integral. What patterns do you observe?