Skip to main content\(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 5.5.2.
For each of the following problems, evaluate the integral by using the partial fraction decomposition provided.
(a)
\(\int \frac{1}{x^2 - 2x - 3} \, dx\text{,}\) given that
\(\frac{1}{x^2 - 2x - 3} = \frac{1/4}{x-3} - \frac{1/4}{x+1}\)
(b)
\(\int \frac{x^2+1}{x^3 - x^2} \, dx\text{,}\) given that
\(\frac{x^2+1}{x^3 - x^2} = -\frac{1}{x} - \frac{1}{x^2} + \frac{2}{x-1}\)
(c)
\(\int \frac{x-2}{x^4 + x^2}\, dx\text{,}\) given that
\(\frac{x-2}{x^4 + x^2} = \frac{1}{x} - \frac{2}{x^2} + \frac{-x+2}{1+x^2}\)