Skip to main content\(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 5.3.4.
Evaluate each of the following definite integrals exactly through an appropriate
\(u\)-substitution.
(a)
\(\int_1^2 \frac{x}{1 + 4x^2} \, dx\)
(b)
\(\int_0^1 e^{-x} (2e^{-x}+3)^{9} \, dx\)
(c)
\(\int_{2/\pi}^{4/\pi} \frac{\cos\left(\frac{1}{x}\right)}{x^{2}} \,dx\)