Skip to main content\(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 5.2.4.
Evaluate each of the following derivatives and definite integrals. Clearly cite whether you use the First or Second FTC in so doing.
(a)
\(\frac{d}{dx} \left[ \int_4^x e^{t^2} \, dt \right]\)
(b)
\(\int_{-2}^x \frac{d}{dt} \left[ \frac{t^4}{1+t^4} \right] \, dt\)
(c)
\(\frac{d}{dx} \left[ \int_{x}^1 \cos(t^3) \, dt \right]\)
(d)
\(\int_{3}^x \frac{d}{dt} \left[ \ln(1+t^2) \right] \, dt\)
(e)
\(\frac{d}{dx} \left[ \int_4^{x^3} \sin(t^2) \, dt \right]\)