Skip to main content
Contents Index
Dark Mode Prev Up Next Scratch ActiveCode Profile
\(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 4.3.2 .
Use known geometric formulas and the net signed area interpretation of the definite integral to evaluate each of the definite integrals below.
(a)
(b)
\(\int_{-1}^4 (2-2x) \, dx\)
(c)
\(\int_{-1}^1 \sqrt{1-x^2} \, dx\)
(d)
\(\int_{-3}^4 g(x) \, dx\text{,}\) where
\(g\) is the function pictured in the following figure. Assume that each portion of
\(g\) is either part of a line or part of a circle.