Skip to main content\(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 2.7.4.
For each of the following curves, use implicit differentiation to find
\(dy/dx\) and determine the equation of the tangent line at the given point.
(a)
\(x^3 - y^3 = 6xy\text{,}\) \((-3,3)\)
(b)
\(\sin(y) + y = x^3 + x\text{,}\) \((0,0)\)
(c)
\(3x e^{-xy} = y^2\text{,}\) \((0.619061,1)\)