Skip to main content\(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 2.6.4.
Determine the derivative of each of the following functions.
(a)
\(\displaystyle f(x) = x^3 \arctan(x) + e^x \ln(x)\)
(b)
\(\displaystyle p(t) = 2^{t\arcsin(t)}\)
(c)
\(\displaystyle h(z) = (\arcsin(5z) + \arctan(4-z))^{27}\)
(d)
\(\displaystyle s(y) = \cot(\arctan(y))\)
(e)
\(\displaystyle m(v) = \ln(\sin^2(v)+1)\)
(f)
\(\displaystyle g(w) = \arctan\left( \frac{\ln(w)}{1+w^2} \right)\)