Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 6.12 Evaluate Loops-WE6-P1
Subgoals for Evaluating a Loop.
-
Determine Loop Components
Start condition and values
Iteration variable and/or update condition
Termination/final condition
Body that is repeated based on indentation
Trace the loop, writing updated values for every iteration or until you identify the pattern
Subsection 6.12.1 Evaluate Loops-WE6-P1
Exercises Exercises
1.
Q26: What is the output of the following loop?
i = 1
while i <= 3:
j = 1
s = “”
while j <= 3:
s += str(i * j)
print(s, end=” “)
111 222 333
123 246 369
1111 2222 3333
1234 2468 36912
12 24 36
2.
Q27: What is the output of the following loop?
for i in range(1, 5):
for j in range(i):
print(i, end=” “)
1 1 2 1 2 3 1 2 3 4
1 2 1 2 3 1 2 3 4
1 1 2 1 2 3 1 2 3 4 5
0 1 0 1 2 0 1 2 3 0 1 2 3 4
0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5
3.
Q28: What is the output of the following loop?
numbers = [1, 2, 3]
for number in numbers:
for i in range(1, 4):
print(number ** i, end = “ “)
1 2 3 2 4 6 3 6 9
1 2 3 4 2 4 6 8 3 6 9 12
1 1 1 1 2 4 8 16 3 9 27 81
1 1 1 2 4 8 3 9 27
1 2 4 3 6 9
4.
Q29: What is the output of the following loop?
for i in range(4):
counter = 0
while counter < 4:
print(i, end=” “)
counter += 1
1 1 1 2 2 2 3 3 3
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
0 0 0 1 1 1 2 2 2 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
5.
Q30: What is the output of the following loop?
x = [1, 2]
y = [3, 4]
for i in x:
for j in y:
print(“(“ + i + “, “ + j + “)”, end=” “)
(1, 3) (2, 4)
(1, 3) (2, 3) (1, 4) (2, 4)
(1, 3) (1, 4) (2, 3) (2, 4)
(1, 2) (1, 3) (1, 4) (2, 3) (2, 4)
(1, 4) (1, 3) (2, 4) (2, 3)
You have attempted
of
activities on this page.