Skip to main content

Section 3.4 Complex Eigenvalues

Consider the following system,
(3.4.1)(dx/dtdy/dt)=(3121)(xy)
The characteristic polynomial of the system (3.4.1) is λ2+4λ+5. The roots of this polynomial are λ1=2+i and λ2=2i with eigenvectors v1=(1,1+i) and v2=(1,1i), respectively. It is clear from the phase portrait of the system that there are no straight-line solutions (Figure 3.4.1). However, we would like to have real solutions for a linear system with real coefficients.
Figure 3.4.1. A system with no straight-line solutions

Subsection 3.4.1 Complex Eigenvalues

Suppose that we have the system
(dx/dtdy/dt)=(0ββ0)(xy)=A(xy),
where β0. The characteristic polynomial of this system is det(AλI)=λ2+β2, and so we have imaginary eigenvalues ±iβ. To find the eigenvector corresponding to λ=iβ, we must solve the system
(iβββiβ)(xy)=(00);
however, this reduces to solving the equation iβx=βy. Thus, we can find a complex eigenvector (1,i). Consequently,
x(t)=eiβt(1i)
is a complex solution to the system x=Ax. The problem is that we have a real system of differential equations and would like real solutions. We can remedy the situation if we use Euler’s formula,
 1 
If you are unfamiliar with Euler’s formula, try expanding both sides as a power series to check that we do indeed have a correct identity.
eiβt=cosβt+isinβt.
Let us rewrite our solution as
x(t)=eiβt(1i)=(cosβt+isinβti(cosβt+isinβt))=(cosβt+isinβtsinβt+icosβt)=(cosβtsinβt)+i(sinβtcosβt)
and consider the real and imaginary parts of the solution:
xRe=(cosβtsinβt)andxIm=(sinβtcosβt).
Since
xRe(t)+ixIm(t)=x(t)=Ax(t)=A(xRe(t)+ixIm(t))=AxRe(t)+iAxIm(t).
we know that xRe(t)=AxRe(t) and xIm(t)=AxIm(t) by setting the real and imaginary parts equal. Thus, both xRe(t) and xIm(t) are solutions to our system. Moreover, since
xRe(0)=(10) and xIm(0)=(01),
we know that the appropriate linear combination of xRe(t) and xIm(t) will provide a solution to any initial value problem.
We claim that
(3.4.2)x(t)=c1xRe(t)+c2xIm(t)
is a general solution to our system. That is, we must be able to write every solution of our system as a linear combination of xRe(t) and xIm(t). If
y(t)=(u(t)v(t))
is another solution to the system x=Ax, then
y(t)=(u(t)v(t))=(0ββ0)(u(t)v(t))=(βv(t)βu(t)).
In other words, u(t)=βv(t) and v(t)=βu(t). Now, define f by
f(t)=(u(t)+iv(t))eiβt.
The derivative of f is
f(t)=(u(t)+iv(t))eiβt+iβ(u(t)+iv(t))eiβt=(βv(t)iβu(t))eiβt+(iβu(t)+i2βv(t))eiβt=0.
Therefore, f(t) is a complex constant and f(t)=(u(t)+iv(t))eiβt=a+bi. We can now write u(t)+iv(t)=(a+ib)eiβt. Thus,
u(t)+iv(t)=(a+ib)eiβt=(a+ib)(cosβtisinβt)=(acosβt+bsinβt)+i(bcosβtasinβt).
Therefore,
u(t)=acosβt+bsinβtv(t)=bcosβtasinβt.
Consequently,
(u(t)v(t))=(acosβt+bsinβtbcosβtasinβt)=a(cosβtsinβt)+b(sinβtcosβt)=axRe(t)+bxIm(t).
Notice that the solutions
x(t)=c1(cosβtsinβt)+c2(sinβtcosβt)
are periodic with period 2π/β. This type of system is called a center.

Example 3.4.2.

Consider the initial value problem
dxdt=2ydydt=2xx(0)=3y(0)=0.
The eigenvalues of this system are λ=±2i. Therefore, the general solution to the system is
x(t)=c1cos2t+c2sin2ty(t)=c1sin2t+c2cos2t.
Using the initial conditions to solve for c1 and c2, the solution to our initial value problem is
x(t)=3cos2ty(t)=3sin2t.
The phase portrait is a circle of radius 3 about the origin (Figure 3.4.3).
Figure 3.4.3. Phase portrait for a center

Subsection 3.4.2 Spiral Sinks and Sources

Now let us consider the system x=Ax, where
A=(αββα)
and α and β are nonzero real numbers. The characteristic equation of A is
λ22αλ+(α2+β2)=0,
so the eigenvalues are λ=α±iβ. We can use the equation
(α(α+iβ))x+βy=0
to show that (1,i) is an eigenvector for α+iβ. Therefore, we have a complex solution of the form
x(t)=e(α+iβ)t(1i)=eαt(cosβtsinβt)+ieαt(sinβtcosβt)=xRe(t)+ixIm(t).
As before, both
xRe(t)=eαt(cosβtsinβt)andxIm(t)=eαt(sinβtcosβt)
are real solutions to x=Ax. Furthermore, these solutions are linearly independent. Indeed, xRe cannot be a multiple of xIm for all values of t. Thus, we have the general solution
x(t)=c1eαt(cosβtsinβt)+c2eαt(sinβtcosβt).
The eαt factor tells us that the solutions either spiral into the origin if α<0 or spiral out to infinity if α>0. In this case we say that the equilibrium points are spiral sinks and spiral sources, respectively.

Example 3.4.4.

Consider the initial value problem
dxdt=x/10+ydydt=xy/10x(0)=2y(0)=2.
The matrix
(1/10111/10)
has eigenvalues λ=1/10±i. The eigenvalue λ=1/10+i has an eigenvector v=(1,i). The complex solution of our system is
x(t)=e(1/10+i)t(1i)=et/10eit(1i)=et/10(cost+isint)(1i)=et/10(cost+isintsint+icost)=et/10(costsint)+iet/10(sintcost)
The real and imaginary parts of this solution are
xRe(t)=et/10(costsint)andxIm(t)=et/10(sintcost),
respectively. Thus, we have the general solution
x(t)=c1et/10(costsint)+c2et/10(sintcost).
Applying our initial conditions, we can determine that c1=2 and c2=2; hence, the solution to our initial value problem is
x(t)=2et/10(cost+sintcostsint).
The phase portrait of this solution indicates that we do indeed have a spiral sink (Figure 3.4.5).
Figure 3.4.5. Phase portrait for a spiral sink

Example 3.4.6.

The initial value problem
dxdt=x/10+ydydt=x+y/10x(0)=0y(0)=1/2.
The matrix
(1/10111/10)
has an eigenvector (1,i) with eigenvalue λ=1/10i. Thus, the complex solution is
x(t)=e(1/10i)t(1i).
Following the procedure that we used in the previous example, the solution to our initial value problem is
x(t)=12et/10(sintcost),
and he phase portrait is a spiral source (Figure 3.4.7).
Figure 3.4.7. Phase portrait for a spiral sink

Activity 3.4.1. Systems with Complex Eigenvalues.

Consider the system dx/dt=Ax, where
A=(7447)
(a)
Find the eigenvalues, λ and λ of A.
(b)
Find eigenvectors, v and v for the eigenvalues λ and λ, respectively.
(c)
Find the complex solution to the system dx/dt=Ax.
(d)
Find the real solution to the system dx/dt=Ax.
(e)
Is the origin a spiral source or a spiral sink? Sketch a solution curve in the xy-plane.

Subsection 3.4.3 Solving Systems with Complex Eigenvalues

Suppose that we have the linear system x=Ax, where
A=(abcd).
The characteristic polynomial of A is
p(λ)=λ2(a+d)λ+(adbc).
If (a+d)24(adbc)<0, then the eigenvalues of A are complex, and we cannot apply the strategy that we used to determine the general solution in the case of distinct real roots.

Example 3.4.8.

The system x=Ax, where
A=(1243).
The characteristic polynomial of A is λ22λ+5 and so the eigenvalues are complex conjugates, λ=1+2i and λ=12i. It is easy to show that an eigenvector for λ=1+2i is v=(1,1i). Recalling that eiθ=cosθ+isinθ,
x(t)=e(1+2i)tv=e(1+2i)t(11i)=ete2it(11i)=et(cos2t+isin2t)(11i)=et(cos2t+isin2t(1i)(cos2t+isin2t))=et(cos2t+isin2t(cos2t+sin2t)+i(cos2tsin2t))=et(cos2tcos2t+sin2t)+iet(sin2tcos2tsin2t)
is a complex solution to our system. Taking the real and imaginary parts of this solution, we obtain the general solution to our system
x(t)=c1et(cos2tcos2t+sin2t)+c2et(sin2tcos2tsin2t).
The nature of the equilibrium solution is determined by the factor eαt in the solution. If α<0, the equilibrium point is a spiral sink. If α>0, the equilibrium point is a spiral source. If α=0, the equilibrium point is a center.
Although we have outlined a procedure to find the general solution of x=Ax if A has complex eigenvalues, we have not shown that this method will work in all cases. We will do so in Section 3.6.

Activity 3.4.2. Planar Systems with Complex Eigenvalues.

Consider the system dx/dt=Ax, where
A=(74105)
(a)
Find the eigenvalues, λ and λ of A.
(b)
Find eigenvectors, v and v for the eigenvalues λ and λ, respectively.
(c)
Find the complex solution to the system dx/dt=Ax.
(d)
Find the real solution to the system dx/dt=Ax.
(e)
Is the origin a spiral source or a spiral sink? Sketch a solution curve in the xy-plane.

Subsection 3.4.4 Important Lessons

  • If
    A=(αββα),
    then A has two complex eigenvalues, λ=α±iβ. The general solution to the system x=Ax is
    x(t)=c1eαt(cosβtsinβt)+c2eαt(sinβtcosβt).
    If α<0, the equilibrium point is a spiral sink. If α>0, the equilibrium point is a spiral source.

Reading Questions 3.4.5 Reading Questions

1.

When are two complex numbers equal?

3.

For a 2×2 linear system with complex eigenvalues, what are the different possibilities for solution curves?

Exercises 3.4.6 Exercises

Solving Linear Systems with Complex Eigenvalues.

Find the general solution of each of the linear systems in Exercise Group 3.4.6.1–8.
3.
x=9x+26yy=4x+11y
4.
x=7x+26yy=4x+13y
8.
x=12x+26yy=4x+8y

Solving Initial Value Problems.

Solve each of the following linear systems for the given initial values in Exercise Group 3.4.6.9–16.
9.
x=2x+2yy=4x+6yx(0)=2y(0)=3
10.
x=2x5yy=x2yx(0)=2y(0)=1
11.
x=9x+26yy=4x+11yx(0)=10y(0)=10
12.
x=7x+26yy=4x+13yx(0)=5y(0)=5
13.
x=2x+13yy=2x+8yx(0)=2y(0)=3
14.
x=7x+13yy=2x+3yx(0)=1y(0)=1
15.
x=18x52yy=8x22yx(0)=5y(0)=3
16.
x=12x+26yy=4x+8yx(0)=2y(0)=5

17.

Consider the linear system dx/dt=Ax, where
A=(3231).
Suppose the initial conditions for the solution curve are x(0)=1 and y(0)=1. We can use the following Sage code to plot the phase portrait of this system, including a solution curve.
Use Sage to graph the direction field for the system linear systems dx/dt=Ax in Exercise Group 3.4.6.9–16. Plot the solution curve for the given initial condition.
You have attempted 1 of 4 activities on this page.