Definition 4.6.1.
A self-adjoint operator is positive if for all vectors It is positive-definite if for all nonzero If for some matrix we also refer to as a positive(-definite) matrix.
cholesky()
algorithm. Note however that it produces a lower triangular matrix, rather than upper triangular. (That is, the output gives xxxxxxxxxx
from sympy import Matrix,init_printing
init_printing()
B = Matrix([[3,7,-4],[5,-9,2],[-3,0,6]])
A = B*B.T
A
xxxxxxxxxx
L = A.cholesky()
L, L*L.T
xxxxxxxxxx
L*L.T == A
A
, the command A.singular_values()
will return its singular values. Try this for a few different matrices below:xxxxxxxxxx
A = Matrix([[1,2,3],[4,5,6]])
A.singular_values()
xxxxxxxxxx
from sympy import Symbol
x = Symbol('x', real=True)
M = Matrix([[0,1,0],[0,x,0],[-1,0,0]])
M,M.singular_values()
xxxxxxxxxx
from sympy import Matrix, init_printing
init_printing()
A = Matrix([[1,1,1],[1,0,-1]])
A.singular_values()
P,S,Q
.xxxxxxxxxx
P,S,Q=A.singular_value_decomposition()
P,S,Q
xxxxxxxxxx
P*S*Q.T
xxxxxxxxxx
Q = Matrix([
[sqrt(3)/3,sqrt(2)/2,sqrt(6)/6],
[sqrt(3)/3,0,-sqrt(6)/3],
[sqrt(3)/3,-sqrt(2)/2,sqrt(6)/6]])
Q*Q.T
xxxxxxxxxx
S = Matrix([[sqrt(3),0,0],[0,sqrt(2),0]])
S*Q.T
ipynb
file can be found on his GitHub page 5 . In it, he takes you through various approaches to finding the singular value decomposition, using the method above, as well as using NumPy and SciPy (which, for industrial applications, are superior to SymPy).A
, we can use the commandQ, R = A.QRdecomposition()
xxxxxxxxxx
from sympy import Matrix,init_printing
init_printing()
A = Matrix(3,3,[1,-2,3,3,-1,2,4,2,5])
Q, R = A.QRdecomposition()
A, Q, R
xxxxxxxxxx
Q**(-1) == Q.T
xxxxxxxxxx
A = Matrix(2,2,[1,-4,-3,5])
A,A.eigenvects()
xxxxxxxxxx
x0 = Matrix(2,1,[1,0])
L = list()
for k in range(10):
L.append(A**k*x0)
L
xxxxxxxxxx
L[9][0]/L[9][1]
float()
(or N
, or append with .evalf()
).xxxxxxxxxx
M = list()
for k in range(9):
M.append((L[k].dot(L[k+1]))/(L[k].dot(L[k])))
M
N(r)
or r.evalf()
. (The latter seems to be the better bet when working with a list.)xxxxxxxxxx
M2 = list()
for k in range(9):
M2.append((M[k]).evalf())
M2
xxxxxxxxxx
A = Matrix(3,3,[5,-2,3,0,4,0,0,-1,3])
A.eigenvals()
xxxxxxxxxx
Q1,R1 = A.QRdecomposition()
A2=R1*Q1
A2,Q1,R1
xxxxxxxxxx
Q2,R2 = A2.QRdecomposition()
A3=R2*Q2
A3.evalf()
xxxxxxxxxx
xxxxxxxxxx