11.1.6. groupwork Tracing Challenge : Recursion

Trace through the following recursion problems.

Consider the following recursive method:

1public static int mystery(int n)
2{
3    if (n == 0)
4        return 1;
5    else
6        return 3 * mystery (n - 1);
7}

The trace of this code for mystery(4) is shown below.

mystery(4) returns 3 * mystery(3)
mystery(3) returns 3 * mystery(2)
mystery(2) returns 3 * mystery(1)
mystery(1) returns 3 * mystery(0)
mystery(0) returns A

Once mystery(0) returns 1 the value for each call to mystery can now be calculated and returned.

mystery(4) returns 3 * mystery(3) = 3 * X = Y
mystery(3) returns 3 * mystery(2) = 3 * 9 = 27
mystery(2) returns 3 * mystery(1) = 3 * 3 = 9
mystery(1) returns 3 * mystery(0) = 3 * 1 = 3
mystery(0) returns 1

Consider the following recursive method:

 1public static int strMethod(String str)
 2{
 3   if (str.length() == 1) return 0;
 4   else
 5   {
 6      if (str.substring(0,1).equals("e")) return 1 +
 7                           strMethod(str.substring(1));
 8      else return strMethod(str.substring(1));
 9   }
10}
strMethod("every") returns 1 + strMethod("very")
strMethod("very") returns strMethod("ery")
strMethod("ery") returns 1 + strMethod("ry")
strMethod("ry") returns strMethod("y")
strMethod("y") returns B

Once strMethod(“y”) returns, the value from each recursive call on the stack can be calculated and returned.

strMethod("every") returns 1 + strMethod("very") = Z
strMethod("very") returns strMethod("ery") = Y
strMethod("ery") returns 1 + strMethod("ry") = 1 + X
strMethod("ry") returns strMethod("y") = 0
strMethod("y") returns 0

11.1.7. Summary

You have attempted of activities on this page