How to Think like a Data Scientist¶
Second Edition
by Brad Miller, Jacqueline Boggs, and Janice L Pearce
Table of Contents¶
- 1. Introduction
- 1.1. Introduction
- 1.1.1. Learning Goals
- 1.1.2. Learning Objectives
- 1.1.3. What Is Data Science?
- 1.1.4. What does it all mean?
- 1.1.5. What does a data scientist do?
- 1.1.6. Data Science in a Liberal Arts Context
- 1.1.7. The Data Science Pipeline
- 1.1.8. Data Science in This Text
- 1.1.9. Datasets in this Book
- 1.1.10. How to Use This Book
- 1.2. Glossary
- 1.1. Introduction
- 2. Exploring the Data Science Pipeline via Descriptive Statistics
- 2.1. Introduction
- 2.2. Case Study 1: The Happiness Report
- 2.3. Case Study 1: Adding More Happiness Data
- 2.4. Case Study 1: Comparing Happiness Data across Years
- 2.5. Challenge in Case Study 1: Calculating a Correlation Matrix
- 2.6. Case Study 2: Considering Starting a Business?
- 2.7. Case Study 2: Where Should We Start Our New Business?
- 2.8. Case Study 2: How is Business Over Time?
- 2.9. Case Study 2: Calculating a Correlation Matrix for Business Data
- 2.10. Glossary
- 3. Optimization
- 4. Python and Jupyter Notebooks
- 4.1. Introduction
- 4.2. Python Review
- 4.2.1. Variables
- 4.2.2. Numeric Data Types
- 4.2.3. Booleans
- 4.2.4. Strings
- 4.2.5. Conditional Statements
- 4.2.6. Lists
- 4.2.7. Range
- 4.2.8. For Loops
- 4.2.9. Dictionaries
- 4.2.10. Functions
- 4.2.11. Map Functions
- 4.2.12. Lambda Functions
- 4.2.13. List Comprehensions
- 4.2.14. Some Additional Important Python Knowledge
- 4.3. Jupyter Notebooks
- 4.4. Installing Anaconda
- 4.5. Using Google Colaboratory Notebooks
- 4.6. Markdown Cells
- 4.7. Glossary
- 5. Learning Pandas with Movie Data
- 6. Exploratory Data Analysis
- 6.1. Introduction
- 6.2. Case Study 1: Exploratory Data Analysis
- 6.3. Case Study 1: Graphing Infant Mortality on a Map
- 6.4. Case Study 1: Screen Scraping the CIA
- 6.5. Case Study 1: Comparing Forms of Government
- 6.6. Case Study 2: Analyzing Protecting Minority Investors
- 6.7. Case Study 2: Graphing Business Data on a Map
- 6.8. Case Study 2: Scraping Business Data Using Panda and BeautifulSoup
- 6.9. Case Study 2: Comparing CIA Government Forms
- 6.10. Glossary
- 7. Ethical and Legal Considerations in Using Data
- 8. Textual Analysis
- 9. Predictive Analytics
- 9.1. Introduction
- 9.2. Predicting Bike Rentals
- 9.3. Exploring Bike Rental Data with SQL
- 9.4. Getting Started with the Bike Data
- 9.5. Filtering
- 9.6. Sorting
- 9.7. Aggregation or Group By
- 9.8. Joining
- 9.9. Getting SQL Data into a DataFrame
- 9.10. Mapping Bike Stations Using Colab
- 9.11. Visualizing Bike Share Data as a Time Series
- 9.12. Predicting Pizza Prices - Linear Regression
- 9.13. Improving our Pizza Price Predictions
- 9.14. Predicting Daily Bike Rentals
- 9.15. Glossary
- 10. Exploring Market Basket Analysis
You have attempted of activities on this page